
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

PHLnkBase
&

PHLnkChan

WDF Driver Documentation
For the Six-Channel
PCIe4L-HOTLink®

Developed with Windows Driver Foundation Ver1.9

Manual Revision B
Corresponding Firmware: Design ID 2, Revision C

Corresponding Hardware: 10-2013-0902

 Embedded Solutions Page 2 of 17

PHLnkBase, PHLnkChan
WDF Device Drivers for the
PCIe4L-HOTLink 6-Channel
HOTLink® Interface

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2016 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by
their respective manufacturers.
Manual Revision B: Revised September 1, 2016

 Embedded Solutions Page 3 of 17

Table of Contents

Introduction ..4
Note ...4
Driver Installation ...5
Windows 7 Installation ...5
Driver Startup ...5
IO Controls..6

IOCTL_PHLNK_BASE_GET_INFO ...6
IOCTL_PHLNK_BASE_LOAD_PLL_DATA ...7
IOCTL_PHLNK_BASE_READ_PLL_DATA ...7
IOCTL_PHLNK_BASE_SET_COUNT_CONTROL ..7
IOCTL_PHLNK_BASE_GET_COUNT_CONTROL ..8
IOCTL_PHLNK_BASE_GET_ISR_STATUS ..8
IOCTL_PHLNK_CHAN_GET_INFO ..9
IOCTL_PHLNK_CHAN_SET_CONFIG ...9
IOCTL_PHLNK_CHAN_GET_CONFIG ... 10
IOCTL_PHLNK_CHAN_GET_STATUS ... 10
IOCTL_PHLNK_CHAN_SET_FIFO_LEVELS .. 11
IOCTL_PHLNK_CHAN_GET_FIFO_LEVELS .. 11
IOCTL_PHLNK_CHAN_GET_FIFO_COUNTS .. 12
IOCTL_PHLNK_CHAN_RESET_FIFOS .. 12
IOCTL_PHLNK_CHAN_WRITE_FIFO ... 12
IOCTL_PHLNK_CHAN_READ_FIFO .. 13
IOCTL_PHLNK_CHAN_REGISTER_EVENT .. 13
IOCTL_PHLNK_CHAN_ENABLE_INTERRUPT .. 13
IOCTL_PHLNK_CHAN_DISABLE_INTERRUPT ... 13
IOCTL_PHLNK_CHAN_FORCE_INTERRUPT .. 13
IOCTL_PHLNK_CHAN_GET_ISR_STATUS ... 14
IOCTL_PHLNK_CHAN_SET_IO_PARAMS ... 14
IOCTL_PHLNK_CHAN_GET_IO_PARAMS .. 15

Write .. 16
Read .. 16

Warranty and Repair .. 17
Service Policy ... 17

Out of Warranty Repairs .. 17
For Service Contact:... 17

 Embedded Solutions Page 4 of 17

Introduction
The PHLnkBase and PHLnkChan drivers are Windows device drivers for the PCIe4L-
Six-Channel HOTLink design from Dynamic Engineering. These drivers were
developed with the Windows Driver Foundation version 1.9 (WDF) from Microsoft,
specifically the Kernel-Mode Driver Framework (KMDF).

The HOTLink board has a Xilinx Spartan-6-LX100 FPGA to implement a PCI interface,
FIFOs and protocol control/status for six HOTLink channels. There is a programmable
PLL to create a custom Byte I/O clock from 16 to 32 MHz for the HOTLink I/O channels.
The PCI bus is using a 50 MHz clock and interfaces with an onboard PCI-to-PCIe
bridge that provides a four-lane PCIe interface.

Each channel has a 16k x 32-bit received data FIFO and an 8k x 32-bit transmit data
FIFO implemented with FPGA internal RAM. These FIFOs can be accessed using
either single-word reads or writes or DMA.

When the PCIe4L-HOTLink board is recognized by the PCI bus configuration utility it
will load the PHLnkBase driver which will create a device object for each board, initialize
the hardware, create child devices for the six I/O channels and request loading of the
PHLnkChan driver. The PHLnkChan driver will create a device object for each of the
I/O channels and perform initialization on each channel. IO Control calls (IOCTLs) are
used to configure the board and read status. Read and Write calls are used to move
blocks of DMA data in and out of the I/O channel devices.

Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the PCIe4L-HOTLink hardware
manual.

 Embedded Solutions Page 5 of 17

Driver Installation
There are several files provided in each driver package. These files include
PHLnkBase.inf, PHLnkBase.cat, PHLnkBase.sys, PHLnkBasePublic.h, PHLnkChan.inf,
PHLnkChan.cat, PHLnkChan.sys, PHLnkChanPublic.h and WdfCoInstaller01009.dll.

PHLnkBasePublic.h and PHLnkChanPublic.h are C header files that define the
Application Program Interface (API) for the PHLnkBase and PHLnkChan drivers. These
files are required at compile time by any application that wishes to interface with the
drivers, but are not needed for driver installation.

Windows 7 Installation
Copy PHLnkBase.inf, PHLnkBase.cat, PHLnkBase.sys, PHLnkChan.inf,
PHLnkChan.cat, PHLnkChan.sys and WdfCoInstaller01009.dll (Win7 version) to a
removable memory device, or another accessible location if preferred.

With the PCIe4L-HOTLink hardware installed, power-on the PCIe host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Let me pick from a list of device drivers on my computer.
• Select Next.
• Select Have Disk and enter the path where the driver files can be found.
• Select Next.
• Select Close to close the update window.

The system should now display the PHLnkChan I/O channels in the Device Manager.
• Right-click on each channel icon, select Update Driver Software and proceed as

above for each channel as necessary.

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware
changes icon on the tool-bar.

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware. A handle can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system. The interface to
the device is identified using globally unique identifiers (GUID), which are defined in
PHLnkBasePublic.h and PHLnkChanPublic.h. See main.c in the PcieHOTLinkUserApp
project for an example of how to acquire handles for the base and six channel devices.

Note: In order to build an application you must link with setupapi.lib.

 Embedded Solutions Page 6 of 17

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the PHLnkBase driver are described below:

IOCTL_PHLNK_BASE_GET_INFO
Function: Returns the device driver version, design version, design type, user switch value,
device instance number and PLL device ID.
Input: None
Output: PHLNK_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has
been selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See the definition of
PHLNK_BASE_DRIVER_DEVICE_INFO below.

 // Driver/Device information
typedef struct _PHLNK_BASE_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR DesignId;
 UCHAR DesignRev;
 UCHAR SwitchValue;
 UCHAR PllDeviceId;
 UCHAR NumChannels; // 1..6
 UCHAR InstanceNum;
} PHLNK_BASE_DRIVER_DEVICE_INFO, *PPHLNK_BASE_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 7 of 17

IOCTL_PHLNK_BASE_LOAD_PLL_DATA
Function: Writes to the internal registers of the PLL.
Input: PHLNK_BASE_PLL_DATA structure
Output: None
Notes: The PHLNK_BASE_PLL_DATA structure has only one field: Data – an array of
40 bytes containing the PLL register data to write. See below for the definition of
PHLNK_BASE_PLL_DATA.

#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _PHLNK_BASE_PLL_DATA {
 UCHAR Data[PLL_MESSAGE_SIZE];
} PHLNK_BASE_PLL_DATA, *PPHLNK_BASE_PLL_DATA;

IOCTL_PHLNK_BASE_READ_PLL_DATA
Function: Returns the contents of the internal registers of the PLL.
Input: None
Output: PHLNK_BASE_PLL_DATA structure
Notes: The register data is written to the PHLNK_BASE_PLL_DATA structure in an
array of 40 bytes. See definition of PHLNK_BASE_PLL_DATA above.

IOCTL_PHLNK_BASE_SET_COUNT_CONTROL
Function: Sets the group-start trigger counter control configuration.
Input: PHLNK_BASE_CHAN_START_CONFIG structure
Output: None
Notes: This call determines the group-start characteristics for enabled channel
transmitters. If StartNow is true, then a trigger pulse is immediately sent to the channel
transmitters. If CountEnable is true, the 20-bit counter starts counting at the rate of one
megahertz. If ClearStart is true, the counter starts counting from zero, otherwise it
loads the StartCount. When the counter reaches the TriggerCount, a trigger pulse is
sent to the channel transmitters. If Continuous is true, the counter continues counting
otherwise it stops when triggered. When the counter reaches the EndCount, the
counter is re-initialized. If ClearEnable is true, the counter goes to zero, otherwise
StartCount is loaded. See definition of PHLNK_BASE_CHAN_START_CONFIG below.

typedef struct _PHLNK_BASE_CHAN_START_CONFIG {
 BOOLEAN StartNow; // Start grouped transmit immediately
 BOOLEAN CountEnable; // Enable counter
 BOOLEAN ClearStart; // Clear count on start, else load StartCount
 BOOLEAN ClearEnable; // Clear count on rollover, else load StartCount
 BOOLEAN Continuous; // Counter runs continuously else single pass
 ULONG StartCount; // Preload count (0-0xfffff)
 ULONG TriggerCount; // Count to start transmissions (0-0xfffff)
 ULONG EndCount; // Rollover count (0-0xfffff)
} PHLNK_BASE_CHAN_START_CONFIG, *PPHLNK_BASE_CHAN_START_CONFIG;

 Embedded Solutions Page 8 of 17

IOCTL_PHLNK_BASE_GET_COUNT_CONTROL
Function: Returns the group-start trigger counter control configuration.
Input: None
Output: PHLNK_BASE_CHAN_START_CONFIG structure
Notes: Three 20-bit count registers and one control register are read and the
information is returned in the PHLNK_BASE_PLL_DATA structure. See definition of
PHLNK_BASE_CHAN_START_CONFIG above.

IOCTL_PHLNK_BASE_GET_ISR_STATUS
Function: Returns the accumulated status that was read in the ISR.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: This call was added to test some of the group-start capabilities of the design.
When a frame done interrupt occurs this call is immediately made and the channels that
have the group-start feature enabled should all show an interrupt status in the
BASE_INT_CHAN_MASK field. Since these status bits are cleared in the channel
DPC, the status bits are accumulated until the GetIsrStatus call is made so they will not
be lost as the channel DPCs are run. When the GetIsrStatus is made, the status bits
are cleared. See the Base status-bit field definitions below.

#define BASE_INT_CHAN_MASK 0x0000003F
#define BASE_PLL_WR_MASK 0x00000700
#define BASE_PLL_RD_MASK 0x00007000
#define BASE_PLL_STAT_MASK 0x00070000
#define BASE_CHAN_MASK 0x07000000

 Embedded Solutions Page 9 of 17

The IOCTLs defined for the PHLnkChan driver are described below:
IOCTL_PHLNK_CHAN_GET_INFO
Function: Returns the driver version and instance number of the device.
Input: None
Output: PHLNK_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of PHLNK_CHAN_DRIVER_DEVICE_INFO below.

// Driver/Device information
typedef struct _PHLNK_CHAN_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR ChannelNum;
 UCHAR SwitchValue; // Board user switch value
 UCHAR InstanceNum; // Board instance from base driver
} PHLNK_CHAN_DRIVER_DEVICE_INFO, *PPHLNK_CHAN_DRIVER_DEVICE_INFO;

IOCTL_PHLNK_CHAN_SET_CONFIG
Function: Sets the requested channel control configuration.
Input: PHLNK_CHAN_CONFIG structure
Output: None
Notes: Specifies the enabled interrupt sources, DMA preemption behavior, transmit
start mode, data storage mode and other control parameters. See the definitions of
PHLNK_CHAN_CONFIG and its subordinate structures below.

typedef struct _PHLNK_CHAN_INTS {
 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt
 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt
 BOOLEAN RxOvflInt; // Receive FIFO overflow interrupt
 BOOLEAN TxFrmDnInt; // Transmit frame done interrupt
 BOOLEAN RxFrmDnInt; // Receive frame done interrupt
} PHLNK_CHAN_INTS, *PPHLNK_CHAN_INTS;

 // Channel DMA priority (use sparingly)
typedef enum _PHLNK_DMA_PRMPT {
 PHLNK_NONE, // No priority
 PHLNK_READ, // Read DMA has priority
 PHLNK_WRITE, // Write DMA has priority
 PHLNK_RDWR // Read and Write DMA have priority
} PHLNK_DMA_PRMPT, *PPHLNK_DMA_PRMPT;

 // Channel Receiver storage mode
typedef enum _PHLNK_RX_MODE {
 STORE_ALL, // Store data and all control
 DATA_ONLY, // Store data only
 SINGLE_CTRL,// Store data and non-repeated control
} PHLNK_RX_MODE, *PPHLNK_RX_MODE;

 // Channel Transmitter start mode
typedef enum _PHLNK_TX_START {
 VIDEO_FRM, // Video frame mode
 SYNC_NONE, // Ignore group-sync signal
 SYNC_FIRST, // Synchronize first frame with sync signal
 SYNC_ALL, // Synchronize all frames with sync signal
} PHLNK_TX_START, *PPHLNK_TX_START;

 Embedded Solutions Page 10 of 17

typedef struct _PHLNK_CHAN_CONFIG {
 BOOLEAN TxEnable; // Enable HOTLink transmitter
 BOOLEAN RxEnable; // Enable HOTLink receiver
 BOOLEAN FifoTestEn; // Enables auto tx->rx FIFO transfer
 BOOLEAN TxOutEn; // Enable transmitter output
 BOOLEAN TxBitEn; // Built-in-test enable (sends test pattern)
 BOOLEAN TxLdEn; // Enables loading of built-in-test data
 BOOLEAN TxClearEn; // Enables clearing Tx Frame request when frame done
 BOOLEAN RxInASel; // Selects Rx input '1'=External, '0'=Local Tx
 BOOLEAN RxBitEn; // Built-in-test enable (verifies test pattern)
 BOOLEAN RxReframe; // '1'=K28.5 re-syncs data, '0'=sync locked
 BOOLEAN RxTestEn; // Forces the receiver to start immediately
 BOOLEAN MuxEnable; // '1'=Enable Tx/Rx Mux, '0'=Mux disabled
 BOOLEAN TxSelect; // '1'=Transmit selected, '0'=Receive selected
 BOOLEAN NoStopSeq; // '1'=No stop sequence, '0'=Send stop sequence
 PHLNK_TX_START TxStart; // Video frame or various stream synch options
 PHLNK_RX_MODE RxStoreMd; // Receiver storage mode
 PHLNK_CHAN_INTS IntConfig; // Interrupt condition enables
 PHLNK_DMA_PRMPT DmaPriority;// DMA preemption control
} PHLNK_CHAN_CONFIG, *PPHLNK_CHAN_CONFIG;

IOCTL_PHLNK_CHAN_GET_CONFIG
Function: Returns the fields set in the previous call.
Input: None
Output: PHLNK_CHAN_CONFIG structure
Notes: See the definitions of PHLNK_INTS, PHLNK_DMA_PRMPT,
PHLNK_RX_MODE, PHLNK_TX_START and PHLNK_CHAN_CONFIG above.

IOCTL_PHLNK_CHAN_GET_STATUS
Function: Returns the channel’s status register value and clears the latched status bits.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: See the status bit definitions below. Only the bits in CHAN_STAT_MASK will be
returned. The bits in CHAN_STAT_LATCH_MASK will be cleared by this call only if
they are set when the register was read. This prevents the possibility of missing an
interrupt condition that occurs after the register has been read but before the latched
register bits are cleared.

// Status bit definitions
#define CHAN_STAT_TX_FF_MT 0x00000001
#define CHAN_STAT_TX_FF_AMT 0x00000002
#define CHAN_STAT_TX_FF_FL 0x00000004
#define CHAN_STAT_TX_FF_VLD 0x00000008
#define CHAN_STAT_RX_FF_MT 0x00000010
#define CHAN_STAT_RX_FF_AFL 0x00000020
#define CHAN_STAT_RX_FF_FL 0x00000040
#define CHAN_STAT_RX_FF_VLD 0x00000080
#define CHAN_STAT_TX_AMT_INT 0x00000100
#define CHAN_STAT_RX_AFL_INT 0x00000200
#define CHAN_STAT_RX_OVFL 0x00000400
#define CHAN_STAT_RX_SYM_ERR 0x00000800
#define CHAN_STAT_WR_DMA_INT 0x00001000

 Embedded Solutions Page 11 of 17

#define CHAN_STAT_RD_DMA_INT 0x00002000
#define CHAN_STAT_WR_DMA_ERR 0x00004000
#define CHAN_STAT_RD_DMA_ERR 0x00008000
#define CHAN_STAT_WR_DMA_RDY 0x00010000
#define CHAN_STAT_RD_DMA_RDY 0x00020000
#define CHAN_STAT_RX_DATA_RDY 0x00040000
#define CHAN_STAT_TX_DATA_READ 0x00080000
#define CHAN_STAT_TX_FRAME_DN 0x00100000
#define CHAN_STAT_RX_FRAME_DN 0x00200000
#define CHAN_STAT_RX_ACTIVE 0x00400000
#define CHAN_STAT_RXIO_FF_FL 0x00800000
#define CHAN_STAT_AUX_FF_MT 0x01000000
#define CHAN_STAT_AUX_FF_AFL 0x02000000
#define CHAN_STAT_AUX_FF_FL 0x04000000
#define CHAN_STAT_TX_DAT_VLD 0x08000000
#define CHAN_STAT_TX_VLD_MASK 0x30000000
#define CHAN_STAT_LOC_INT 0x40000000
#define CHAN_STAT_INT_ACTIVE 0x80000000

IOCTL_PHLNK_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: PHLNK_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are initialized to the default values ⅛ FIFO and ⅞ FIFO
respectively when the driver initializes. The FIFO counts are compared to these levels
to set the state of the CHAN_STAT_TX_FF_AMT and CHAN_STAT_RX_FF_AFL
status bits and latch the CHAN_STAT_TX_AMT_LT and CHAN_STAT_RX_AFL_LT
latched status bits. Also if the control bits CHAN_CNTRL_URGNT_OUT_EN and/or
CHAN_CNTRL_URGNT_IN_EN are set, the FIFO level values are used to determine
when to give priority to an output or input DMA channel that is running out of data or
room to store data. See the definition of PHLNK_CHAN_FIFO_LEVELS below.

typedef struct _PHLNK_CHAN_FIFO_LEVELS {
 ULONG AlmostFull;
 ULONG AlmostEmpty;
} PHLNK_CHAN_FIFO_LEVELS, *PPHLNK_CHAN_FIFO_LEVELS;

IOCTL_PHLNK_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: PHLNK_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 12 of 17

IOCTL_PHLNK_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive data FIFOs.
Input: None
Output: PHLNK_CHAN_FIFO_COUNTS structure
Notes: There are three pipe-line latches and a fifteen word auxiliary FIFO in addition to
the 8k data FIFO for the transmit data-path and four pipe-line latches and a 16k data
FIFO for the receive data-path. These are counted in the FIFO counts. That means the
transmit count can be a maximum of 8210 32-bit words and the receive count can be a
maximum of 16388 32-bit words. See the definition of PHLNK_CHAN_FIFO_COUNTS
below.

typedef struct _PHLNK_CHAN_FIFO_COUNTS {
 ULONG TxCount;
 ULONG RxCount;
} PHLNK_CHAN_FIFO_COUNTS, *PPHLNK_CHAN_FIFO_COUNTS;

IOCTL_PHLNK_CHAN_RESET_FIFOS
Function: Resets one or both FIFOs for the referenced channel.
Input: PHLNK_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmit or receive FIFO or both depending on the input parameter
selection. See the definition of PHLNK_CHAN_FIFO_SEL below.

 // Used for FIFO reset call
typedef enum _PHLNK_CHAN_FIFO_SEL {
 PHLNK_TX,
 PHLNK_RX,
 PHLNK_BOTH
} PHLNK_CHAN_FIFO_SEL, *PPHLNK_CHAN_FIFO_SEL;

IOCTL_PHLNK_CHAN_WRITE_FIFO
Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

 Embedded Solutions Page 13 of 17

IOCTL_PHLNK_CHAN_READ_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_PHLNK_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause this event to be signaled.

IOCTL_PHLNK_CHAN_ENABLE_INTERRUPT
Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each user
interrupt occurs to re-enable it.

IOCTL_PHLNK_CHAN_DISABLE_INTERRUPT
Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_PHLNK_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

 Embedded Solutions Page 14 of 17

IOCTL_PHLNK_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the status that was read while servicing the last interrupt caused by one
of the user-enabled channel interrupt conditions. The interrupts that deal with the DMA
transfers do not affect this value. The new field is true if the stored ISR status has been
updated since the last time this call was made. See below for the definition of
PHLNK_CHAN_ISR_STATUS.

typedef struct _PHLNK_CHAN_ISR_STATUS {
 ULONG Status; // Value of status register read in ISR
 BOOLEAN New; // True if the status has changed since last GetIsrStatus call
} PHLNK_CHAN_ISR_STATUS, *PPHLNK_CHAN_ISR_STATUS;

IOCTL_PHLNK_CHAN_SET_IO_PARAMS
Function: Sets the start and stop sequences and byte count for I/O transfers.
Input: PHLNK_CHAN_IO_PARAMS structure
Output: None
Notes: Start and Stop sequences are inserted by the transmitter to mark the beginning
and end of a data-frame. The receiver uses these sequences to determine when to
start storing data, when to stop, and for detecting byte-counts for each data-frame. A
new field, FrmSpcr was added to control subsequent frame timing in the sync initial
frame transmit start mode. This count determines the number of idle bytes sent
between frames. See the definitions of PHLNK_CHAN_IO_CHAR and
PHLNK_CHAN_IO_PARAMS below.

typedef struct _PHLNK_CHAN_IO_CHAR {
 BOOLEAN CntrlChar;
 UCHAR Byte;
} PHLNK_CHAN_IO_CHAR, *PPHLNK_CHAN_IO_CHAR;

#define MAX_CHARS_PER_SEQ 3

 // Defaults loaded if fields are zero
 // (Start-0x105,0x104; Stop-0x104,0x105; Count-0x008000)
typedef struct _PHLNK_CHAN_IO_PARAMS {
 UCHAR StartCnt; // Zero to three characters
 UCHAR StopCnt; // Zero to three characters
 PHLNK_CHAN_IO_CHAR StartSeq[MAX_CHARS_PER_SEQ];
 PHLNK_CHAN_IO_CHAR StopSeq[MAX_CHARS_PER_SEQ];
 ULONG ByteCnt; // 16 MByte max count (24 bits)
 ULONG FrmSpcr; // 16 MByte max count (24 bits)
} PHLNK_CHAN_IO_PARAMS, *PPHLNK_CHAN_IO_PARAMS;

 Embedded Solutions Page 15 of 17

IOCTL_PHLNK_CHAN_GET_IO_PARAMS
Function: Returns the start and stop sequences, byte count and inter-frame spacer for I/O
transfers.
Input: None
Output: PHLNK_CHAN_IO_PARAMS structure
Notes: Returns the values set in the previous call. See structure definitions above.

 Embedded Solutions Page 16 of 17

Write
HOTLink DMA data is written to the referenced I/O channel device using the write
command. Writes are executed using the Win32 function WriteFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer containing the data to be written, an unsigned long integer that represents the
size of that buffer in bytes, a pointer to an unsigned long integer to contain the number
of bytes actually written, and a pointer to an optional Overlapped structure for
performing asynchronous IO.

Read
HOTLink DMA data is read from the referenced I/O channel device using the read
command. Reads are executed using the Win32 function ReadFile() and passing in the
handle to the I/O channel device opened with CreateFile(), a pointer to a pre-allocated
buffer that will contain the data read, an unsigned long integer that represents the size
of that buffer in bytes, a pointer to an unsigned long integer to contain the number of
bytes actually read, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

 Embedded Solutions Page 17 of 17

Warranty and Repair
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.
Out of Warranty Repairs
Out of warranty support will be billed. An open PO will be required.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

