
DYNAMIC ENGINEERING
150 DuBois, Suite B&C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

PMC-BiSerial-VI-UART

Windows 10 WDF Driver
Documentation

Developed with Windows Driver Foundation
(WDF) Kernel-Mode Driver Framework (KMDF)

Ver1.19

Revision 01p3 4/11/25
Corresponding Hardware: Revision 06+

PMC 10-2015-0606/7
FLASH 0301

https://www.dyneng.com/
https://www.dyneng.com/
mailto:dedra@dyneng.com
mailto:dedra@dyneng.com

 Embedded Solutions Page 2

PMC-BiSerial-VI-UART
WDF Device Drivers

Dynamic Engineering

150 DuBois, Suite B&C

Santa Cruz, CA 95060

(831) 457-8891

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with PMC carriers
and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©1988-2025 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.

 Embedded Solutions Page 3

INTRODUCTION 5

SOFTWARE DESCRIPTION 5

DRIVER INSTALLATION 5

Windows 10 Installation 6

Driver Startup 6

IO Controls 7
IOCTL_UART_BASE_GET_INFO 7
IOCTL_UART_BASE_GET_STATUS 8
IOCTL_UART_BASE_LOAD_PLL 8
IOCTL_UART_BASE_READ_PLL 8
IOCTL_PAR_GPIO_REGISTER_EVENT 8
IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS 9
IOCTL_PAR_GPIO_SET_PORTS 9
IOCTL_PAR_GPIO_GET_PORTS 9
IOCTL_PAR_GPIO_SET_MINTEN 10
IOCTL_PAR_GPIO_SET_DATA_OUT 10
IOCTL_PAR_GPIO_GET_DATA_OUT 10
IOCTL_PAR_GPIO_SET_DIR 11
IOCTL_PAR_GPIO_GET_DIR 11
IOCTL_PAR_GPIO_SET_POL 11
IOCTL_PAR_GPIO_GET_POL 11
IOCTL_PAR_GPIO_SET_EDGE_LEVEL 11
IOCTL_PAR_GPIO_GET_EDGE_LEVEL 11
IOCTL_PAR_GPIO_SET_INT_EN 12
IOCTL_PAR_GPIO_GET_INT_EN 12
IOCTL_PAR_GPIO_READ_DIRECT 12
IOCTL_PAR_GPIO_READ_FILTERED 12
IOCTL_PAR_GPIO_SET_COS_RISING_STAT 12
IOCTL_PAR_GPIO_GET_COS_RISING_STAT 13
IOCTL_PAR_GPIO_SET_COS_FALLING_STAT 13
IOCTL_PAR_GPIO_GET_COS_FALLING_STAT 13
IOCTL_PAR_GPIO_SET_COS_RISING_EN 13
IOCTL_PAR_GPIO_GET_COS_RISING_EN 14
IOCTL_PAR_GPIO_SET_COS_FALLING_EN 14
IOCTL_PAR_GPIO_GET_COS_FALLING_EN 14
IOCTL_PAR_GPIO_SET_HALFDIV 14
IOCTL_PAR_GPIO_GET_HALFDIV 14
IOCTL_PAR_GPIO_SET_TERM 15

Table of Contents

 Embedded Solutions Page 4

IOCTL_PAR_GPIO_GET_TERM 15
IOCTL_UART_CHAN_GET_INFO 16
IOCTL_UART_CHAN_SET_CONT 17
IOCTL_UART_CHAN_GET_CONT 18
IOCTL_UART_CHAN_SET_CONT_B 19
IOCTL_UART_CHAN_GET_CONT_B 19
IOCTL_UART_CHAN_GET_STATUS 20
IOCTL_UART_CHAN_CLEAR_STATUS 21
IOCTL_UART_CHAN_SET_BAUD_RATE 21
IOCTL_UART_CHAN_GET_BAUD_RATE 21
IOCTL_UART_CHAN_SET_FIFO_LEVELS 21
IOCTL_UART_CHAN_GET_FIFO_LEVELS 22
IOCTL_UART_CHAN_SET_FRAME_TIME 22
IOCTL_UART_CHAN_GET_FRAME_TIME 22
IOCTL_UART_CHAN_GET_FIFO_COUNTS 23
IOCTL_UART_CHAN_RESET_FIFOS 23
IOCTL_UART_CHAN_REGISTER_EVENT 23
IOCTL_UART_CHAN_ENABLE_INTERRUPT 24
IOCTL_UART_CHAN_DISABLE_INTERRUPT 24
IOCTL_UART_CHAN_FORCE_INTERRUPT 24
IOCTL_UART_CHAN_GET_ISR_STATUS 24
IOCTL_UART_CHAN_SWW_TX_FIFO 24
IOCTL_UART_CHAN_SWR_RX_FIFO 25
IOCTL_UART_CHAN_WRITE_PKT_LEN 25
IOCTL_UART_CHAN_READ_PKT_LEN 25
IOCTL_UART_CHAN_SET_TIMER 25
IOCTL_UART_CHAN_GET_TIMER 26
IOCTL_UART_CHAN_GET_TIMER_CNT 26

Write 27

Read 27

WARRANTY AND REPAIR 28

Service Policy 28
Support 28

For Service Contact: 28

 Embedded Solutions Page 5

Introduction

PmcBis6Uart is an 8 UART port PMC compatible interface card. This driver was
developed with the Windows Driver Foundation version 1.9 (WDF) from
Microsoft, specifically the Kernel-Mode Driver Framework (KMDF).

The UART functionality is implemented in a Xilinx FPGA. It implements a PCI
interface, FIFOs and protocol control/status for 8 channels. Each channel has
separate 255 x 32 bit receive data and transmit data FIFOs.

New with Flash revision 3.1 is a programmable parallel port. The parallel port
can be mapped in/out to replace unused UART ports. GPIO features including
COS interrupts.

When the PmcBis6Uart board is recognized by the PCI bus configuration utility it
will load the PmcBis6Uart driver which will create a device object for the board,
initialize the hardware, and create child devices for the 8 I/O channels.

Software Description

The PmcBis6Uart driver supports simultaneous operation of all ports
independently. The driver and HW support both a packed and non-packed mode
of operation. Non-packed mode functions as a virtual 8-bit port simulating the
standard UART mode of operation. Specifically, each access to the read/write
port transfers 1 byte of data.

Packed mode supports 4 bytes of data per access. This mode can be controlled
via the IOCTL_UART_SET_CHANNEL_CONFIG. Tx access and Rx access can
be set independently of one another.

Driver Installation

There are several files provided in each driver package. These files include
UartBasePublic.h, pmcbis6uart_base.inf, pmcbis6uart_base.cat,
pmcbis6uart_base.sys, UartChanPublic.h, Uart_Chan.inf, uart_chan.cat,
Uart_Chan.sys.

UartBasePublic.h and UartChanPublic.h are the C header file that define the
Application Program Interface (API) for the PmcBis6Uart drivers. This file is
required at compile time by any application that wishes to interface with the
drivers, but is not needed for driver installation.

 Embedded Solutions Page 6

Windows 10 Installation

Copy the .inf, .cat, .sys files for the base and channel to an easy to navigate to
directory.

With the PMC-BISERIAL-VI-UART hardware installed, power-on the PCI host
computer.

• Open the Device Manager from the control panel (or use search to find it).

• Scan for changes if the BiSerial is not shown.

• Navigate to the Base .inf file, right click and select install.

• Give permission when the OS requests

• Repeat with the port .inf file

• All 8 channels will auto-install.

Driver Startup

Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in UartBasePublic.h and UartChanPublic.h. See main.c in the
PmcBis6UartUserAp project for an example of how to acquire a handle to the
device.

Note: In order to build an application, you must link with setupapi.lib.

 Embedded Solutions Page 7

IO Controls

The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win32 function DeviceIoControl(), and passing in the handle
to the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header

file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

structure

); // used for asynchronous I/O

The IOCTLs defined for the PMC BISERIAL 6 UART driver are described
below:

IOCTL_UART_BASE_GET_INFO

Function: Returns the device driver version, design version, design type, user switch
value, device instance number and PLL device ID.
Input: None
Output: PUART_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has
been selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See the definition of
UART_BASE_DRIVER_DEVICE_INFO below. Bit definitions can be found in the
‘BASE_GP’ section under Register Definitions in the Hardware manual.

typedef struct _UART_BASE_DRIVER_DEVICE_INFO

{
 UCHAR DriverVersion;

 UCHAR XilType;

 UCHAR RevMaj;

 UCHAR RevMin;

 UCHAR PllDeviceId;

 UCHAR SwitchValue;

 ULONG InstanceNumber;

} UART_BASE_DRIVER_DEVICE_INFO, *PUART_BASE_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 8

IOCTL_UART_BASE_GET_STATUS

Function: Returns Interrupt Base Status Register.
Input: None
Output: ULONG
Notes: Provides the interrupt status of each of the 8 channels, plus 3 Parallel port
interrupt request bits. Bit definitions can be found in ‘BASE_INT’ section under Register
Definitions in the Hardware manual.

IOCTL_UART_BASE_LOAD_PLL

Function: Loads the internal registers of the PLL.
Input: UART_BASE_PLL_DATA structure
Output: None
Notes: After the PLL has been configured, the register array data is analysed to
determine the programmed frequencies, and the IO clock A-D initial divisor fields
in the base control register are automatically updated.

IOCTL_UART_BASE_READ_PLL

Function: Returns the contents of the PLL’s internal registers
Input: None
Output: UART_BASE_PLL_DATA structure
Notes: The register data is output in the UART_BASE_PLL_DATA structure In
an array of 40 bytes

IOCTL_PAR_GPIO_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The user creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced by the driver. The user-defined interrupt service routine waits on this
event, allowing it to respond to the interrupt. The DMA interrupts do not cause
the event to be signaled unless they are explicitly enabled in the enable
interrupts call.

 Embedded Solutions Page 9

IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS

Function: Returns and clears the interrupt status and registers.
Input: None
Output: PAR_TTL_GPIO_ISR_STAT structure
Notes: Since the interrupt service routine may have fired multiple times, this
returns the cumulative values, or-ed together, of interrupt status and registers
read in the interrupt service routine. This IOCTL will clear the stored values.

typedef struct _PAR_GPIO_ISR_STAT {
 ULONG InterruptStatus;
 ULONG RisingData;
 ULONG FallingData;
 ULONG FilteredData;
 ULONG DirectData;
} PAR_GPIO_ISR_STAT, * PPAR_GPIO_ISR_STAT;

IOCTL_PAR_GPIO_SET_PORTS

Function: Select mode of operation for each port. UART or Parallel.
Input: PAR_GPIO_TYPE
Output: None
Notes: Default is UART operation, HW resets to this state and driver initializes
as well.

IOCTL_PAR_GPIO_GET_PORTS

Function: Reads and returns a single 32-bit data word from the Direction Register.
Input: None
Output: PAR_GPIO_TYPE

typedef struct _PAR_GPIO_TYPE {

 PortType PORT1; // Set Port to UART or Parallel

 PortType PORT2; // Set Port to UART or Parallel

 PortType PORT3; // Set Port to UART or Parallel

 PortType PORT4; // Set Port to UART or Parallel

 PortType PORT5; // Set Port to UART or Parallel

 PortType PORT6; // Set Port to UART or Parallel

 PortType PORT7; // Set Port to UART or Parallel

 PortType PORT8; // Set Port to UART or Parallel

} PAR_GPIO_TYPE, * PPAR_GPIO_TYPE;

 Embedded Solutions Page 10

IOCTL_PAR_GPIO_SET_MINTEN

Function: Enable or Disable Master Interrupt Enable for Parallel Port operation
Input: PAR_GPIO_MINT_EN
Output: None
Notes: The user app must call IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS
after enabling master interrupts to clear out any older unprocessed interrupt
status bit. No effect on UART interrupts. Separate enables for Rising, Falling,
Level types. ISR returns with Rising and Falling status captured and cleared
plus interrupts returned to the enabled state. Level based interrupts are left not
enabled requiring the user to re-enable when the IO is in the correct pre-trigger
state.

typedef struct _PAR_GPIO_MINT_EN {

 // TRUE = Enabled, Default is Disabled

 BOOLEAN MasterCosRintEn; // Master for Rising Interrupts

 BOOLEAN MasterCosFintEn; // Master for Falling Interrupts

 BOOLEAN MasterCosLintEn; // Master for Level Interrupts

} PAR_GPIO_MINT_EN, * PPAR_GPIO_MINT_EN;

IOCTL_PAR_GPIO_SET_DATA_OUT

Function: Writes a single 32-bit data-word to the Data Transmit Register
Input: ULONG
Output: None
Notes: IOCTL_PAR_GPIO_SET_DIR must also be set to make this value the
output value.

IOCTL_PAR_GPIO_GET_DATA_OUT

Function: Reads and returns a single 32-bit data word from the Data Register.
Input: None
Output: ULONG
Notes: This is the register read-back and will match the SET data. Use Direct or
Filtered registers to obtain the state of the IO.

 Embedded Solutions Page 11

IOCTL_PAR_GPIO_SET_DIR

Function: Writes a single 32-bit data-word to the Direction Register
Input: ULONG
Output: None
Notes: Setting a ‘1’ in this register will make this bit an output. Setting a ‘0’ will
make the bit an input.

IOCTL_PAR_GPIO_GET_DIR

Function: Reads and returns a single 32-bit data word from the Direction Register.
Input: None
Output: ULONG

IOCTL_PAR_GPIO_SET_POL

Function: Writes a single 32-bit data-word to the Polarity Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit will be inverted. This only affects input data,
not output data. See the Filtered Data registers.

IOCTL_PAR_GPIO_GET_POL

Function: Reads and returns a single 32-bit data word from the Polarity Register.
Input: None
Output: ULONG
Notes:

IOCTL_PAR_GPIO_SET_EDGE_LEVEL

Function: Writes a single 32-bit data-word to the EdgeLevel Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit will be treated as edge sensitive. Only
affects input side data, not the driven data. For each bit cleared, the data is
treated as level sensitive.

IOCTL_PAR_GPIO_GET_EDGE_LEVEL

Function: Reads and returns a single 32-bit data word from the EdgeLevel Register.
Input: None
Output: ULONG
Notes:

 Embedded Solutions Page 12

IOCTL_PAR_GPIO_SET_INT_EN

Function: Writes a single 32-bit data-word to the Interrupt Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the bit the associated interrupt will be enabled.
Used for both Level and Edge defined processing. See Rising and Falling for
additional options.

IOCTL_PAR_GPIO_GET_INT_EN

Function: Reads and returns a single 32-bit data word from the Interrupt Enable
Register.
Input: None
Output: ULONG
Notes:

IOCTL_PAR_GPIO_READ_DIRECT

Function: Reads and returns a single 32-bit data word from the IO port.
Input: None
Output: ULONG
Notes: Direct data is synchronized but not filtered in any way. Get the state of
the IO (whether defined as output or input).

IOCTL_PAR_GPIO_READ_FILTERED

Function: Reads and returns a single 32-bit data word from the IO port after
manipulation.
Input: None
Output: ULONG
Notes: Data is synchronized and filtered. Polarity and EdgeLevel are applied.

IOCTL_PAR_GPIO_SET_COS_RISING_STAT

Function: Writes a single 32-bit data-word to the Rising Status Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding bit in the Rising Status Register
is cleared. If interrupts are being used, the COS Rising value will be captured
and the register bits will be automatically cleared in the interrupt service routine.
The value captured can be retrieved with the
IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

 Embedded Solutions Page 13

IOCTL_PAR_GPIO_GET_COS_RISING_STAT

Function: Reads and returns a single 32-bit data word from the Rising Status Register.
Input: None
Output: ULONG
Notes: When an IO bit programmed as Edge and Rising transitions from low to
high the status bit is set. If the corresponding Interrupt Enable is also set an
interrupt is generated. Clear by writing back with the bit(s) set. If interrupts are
being used, the COS Rising value will be captured and the register bits will be
automatically cleared in the interrupt service routine. The value captured can be
retrieved with the IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

IOCTL_PAR_GPIO_SET_COS_FALLING_STAT

Function: Writes a single 32-bit data-word to the Falling Status Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding bit in the Falling Status Register
is cleared. If interrupts are being used, the COS Falling value will be captured
and the register bits will be automatically cleared in the interrupt service routine.
The value captured can be retrieved with the
IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

IOCTL_PAR_GPIO_GET_COS_FALLING_STAT

Function: Reads and returns a single 32-bit data word from the Falling Status Register.
Input: None
Output: ULONG
Notes: When an IO bit programmed as Edge and Falling transitions from High to
Low the status bit is set. If the corresponding Interrupt Enable is also set an
interrupt is generated. Clear by writing back with the bit(s) set. If interrupts are
being used, the COS Falling value will be captured and the register bits will be
automatically cleared in the interrupt service routine. The value captured can be
retrieved with the IOCTL_PAR_GPIO_GET_AND_CLEAR_ISR_STATUS.

IOCTL_PAR_GPIO_SET_COS_RISING_EN

Function: Writes a single 32-bit data-word to the Rising Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured
for rising edge transitions.

 Embedded Solutions Page 14

IOCTL_PAR_GPIO_GET_COS_RISING_EN

Function: Reads and returns a single 32-bit data word from the Rising Enable Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

IOCTL_PAR_GPIO_SET_COS_FALLING_EN

Function: Writes a single 32-bit data-word to the Falling Enable Register
Input: ULONG
Output: None
Notes: For each bit set to ‘1’ the corresponding IO bit is enabled to be captured
for falling edge transitions.

IOCTL_PAR_GPIO_GET_COS_FALLING_EN

Function: Reads and returns a single 32-bit data word from the Falling Enable
Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

IOCTL_PAR_GPIO_SET_HALFDIV

Function: Writes a single 32-bit data-word to the Rising Enable Register
Input: ULONG
Output: None
Notes: Write to this register to define divider to apply to COS reference clock
selected. COS clock is Reference / 2N where N= 16 bits. Set upper bits to 0.

IOCTL_PAR_GPIO_GET_HALFDIV

Function: Reads and returns a single 32-bit data word from the HalfDiv Register.
Input: None
Output: ULONG
Notes: Register read, will match current register value.

 Embedded Solutions Page 15

IOCTL_PAR_GPIO_SET_TERM

Function: Writes a single 32-bit data-word to the Termination Register
Input: ULONG
Output: None
Notes: Setting a ‘1’ in this register will terminate this bit. Setting a ‘0’ will disable
termination on this bit. Normally, bits programmed as inputs are terminated.
Check your system design as the termination may be supplied in the cable.

IOCTL_PAR_GPIO_GET_TERM

Function: Reads and returns a single 32-bit data word from the Termination Register.
Input: None
Output: ULONG

 Embedded Solutions Page 16

IOCTL_UART_CHAN_GET_INFO

Function: Returns the device driver version and instance number.
Input: None
Output: UART_CHAN_DRIVER_DEVICE_INFO structure
Notes: Instance number is the zero-based device number. See the definition of
UART_CHAN_DRIVER_DEVICE_INFO below.

typedef struct _UART_CHAN_DRIVER_DEVICE_INFO {

 UCHAR DriverVersion;

 ULONG InstanceNumber;

} UART_CHAN_DRIVER_DEVICE_INFO,

*PUART_CHAN_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 17

IOCTL_UART_CHAN_SET_CONT

Function: Specifies the base control configuration.
Input: UART_CHAN_CONT structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See the
definition of UART_CHAN_CONT below. Bit definitions can be found in the
‘UART_CHAN_CONT’ section under Register Definitions in the Hardware manual.

typedef struct _UART_CHAN_CONT {

 BOOLEAN lb_enable;

 BOOLEAN tx_enable;

 BOOLEAN rx_enable;

 BOOLEAN rx_err_int_en;

 BOOLEAN tx_fifo_amt_int_en;

 BOOLEAN rx_fifo_afl_int_en;

 BOOLEAN rx_ovrflow_int_en;

 BOOLEAN rx_pkt_lvl_int_en;

 BOOLEAN tx_break;

 BOOLEAN tx_par_en;

 BOOLEAN tx_par_odd;

 BOOLEAN tx_stop_2;

 BOOLEAN tx_len_8;

 BOOLEAN rx_par_en;

 BOOLEAN rx_par_odd;

 BOOLEAN rx_stop_2;

 BOOLEAN rx_len_8;

 BOOLEAN tx_par_lvl;

 BOOLEAN rx_par_lvl;

 TX_RX_MODE tx_mode;

 TX_RX_MODE rx_mode;

} UART_CHAN_CONT, *PUART_CHAN_CONT;

typedef enum _TX_RX_MODE {

 ONE_BYTE,

 PACKED,

 PACKETIZED,

 ALT_PACK,

 TEST, // only valid for tx mode

} TX_RX_MODE, *PTX_RX_MODE;

 Embedded Solutions Page 18

IOCTL_UART_CHAN_GET_CONT

Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_CONT above.

 Embedded Solutions Page 19

IOCTL_UART_CHAN_SET_CONT_B

Function: Specifies the base control configuration.
Input: UART_CHAN_CONT_B structure
Output: None
Notes: All bits are active high and are reset on system power up or reset. See
the definition of UART_CHAN_CONT_B below. Bit definitions can be found in the
‘UART_CHAN_CONTB’ section under Register Definitions in the Hardware
manual.

typedef struct _UART_CHAN_CONT_B {

 BOOLEAN brk_rise_int_en;

 BOOLEAN brk_fall_int_en;

 BOOLEAN brk_int_en;

 BOOLEAN tx_pck_done_int_en;

 BOOLEAN dir_tx;

 BOOLEAN term_rx;

 BOOLEAN term_tx;

 BOOLEAN rx_pck_done_int_en;

 UCHAR tx_pck_delay_mask;

 BOOLEAN tx_timer_en;

 BOOLEAN timer_int_en;

 BOOLEAN tx_timer_emsk;

 UART_TIMER_MODE timer_mode;

 BOOLEAN dir_rts;

 BOOLEAN force_rts;

 BOOLEAN inv_flow_cont;

 BOOLEAN use_cts;

 BOOLEAN term_rts;

 BOOLEAN term_cts;

 BOOLEAN pll_input;

} UART_CHAN_CONT_B, *PUART_CHAN_CONT_B;

typedef enum _UART_TIMER_MODE {

 DISABLE_BOTH,

 ENABLE_TIMER,

 ENABLE_TRISTATE,

 ENABLE_BOTH

} UART_TIMER_MODE, *PUART_TIMER_MODE;

IOCTL_UART_CHAN_GET_CONT_B

Function: Returns the fields set in the previous call.
Input: None
Output: UART_CHAN_CONT_B structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_CONT_B above.

 Embedded Solutions Page 20

IOCTL_UART_CHAN_GET_STATUS

Function: Returns the value of the channel status register.
Input: None
Output: ULONG
Notes: See Channel status bit definitions below. You can use any of the Masks
provided in the UartChanPublic.h file to mask off the desired bits. Bit definitions can be
found in the ‘UART_CHAN_STAT’ section under Register Definitions in the Hardware
manual.
// Channel Status bit definitions

#define STAT_TX_FF_MT 0x00000001

#define STAT_TX_FF_AMT 0x00000002

#define STAT_TX_FF_FL 0x00000004

#define STAT_TX_TIMER_LAT 0x00000008

#define STAT_RX_FF_MT 0x00000010

#define STAT_RX_FF_AFL 0x00000020

#define STAT_RX_FF_FL 0x00000040

#define STAT_RTS_STAT 0x00000080

#define STAT_TX_PAR_ERR_LAT 0x00000100

#define STAT_RX_FRM_ERR_LAT 0x00000200

#define STAT_RX_OVRFL_LAT 0x00000400

#define STAT_RX_LEN_OVRFL_LAT 0x00000800

#define STAT_WR_DMA_ERR 0x00001000

#define STAT_RD_DMA_ERR 0x00002000

#define STAT_WR_DMA_INT 0x00004000

#define STAT_RD_DMA_INT 0x00008000

#define STAT_RX_PCKT_FF_MT 0x00010000

#define STAT_RX_PCKT_FF_FL 0x00020000

#define STAT_TX_PCKT_FF_MT 0x00040000

#define STAT_TX_PCKT_FF_FL 0x00080000

#define STAT_LOC_INT 0x00100000

#define STAT_INT_STAT 0x00200000

#define STAT_RX_PCKT_DONE_LAT 0x00400000

#define STAT_TX_PCKT_DONE_LAT 0x00800000

#define STAT_TX_IDLE 0x01000000

#define STAT_RX_IDLE 0x02000000

#define STAT_BURST_IN_IDLE 0x04000000

#define STAT_BURST_OUT_IDLE 0x08000000

#define STAT_BRK_STAT_LAT 0x10000000

#define STAT_BRK_STAT 0x20000000

#define STAT_TX_AMT_LAT 0x40000000

#define STAT_RX_AFL_LAT 0x80000000

 Embedded Solutions Page 21

IOCTL_UART_CHAN_CLEAR_STATUS

Function: Clears specified latched status bits then returns the value of the channel
status register.
Input: ULONG
Output: None
Notes: Write to the bit to clear the specific latch to be cleared. . Bit definitions can be
found in the ‘UART_CHAN_STAT’ section under Register Definitions in the Hardware
manual.

IOCTL_UART_CHAN_SET_BAUD_RATE

Function: Write to set TX/RX baud rate.
Input: UART_CHAN_BAUD_RATE
Output: None
Notes: See the definition of UART_CHAN_BAUD_RATE below. Definition can
be found in the ‘CHAN_BAUD_RATE’ section under Register Definitions in the
Hardware manual.

typedef struct _UART_CHAN_BAUD_RATE{

 USHORT TxBaudRate;

 USHORT RxBaudRate;

} UART_CHAN_BAUD_RATE, *PUART_CHAN_BAUD_RATE;

IOCTL_UART_CHAN_GET_BAUD_RATE

Function: Read to get TX/RX baud rate
Input: None
Output: UART_CHAN_BAUD_RATE
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_BAUD_RATE above.

IOCTL_UART_CHAN_SET_FIFO_LEVELS

Function: Sets the transmitter almost empty and receiver almost full levels for
the channel.
Input: UART_CHAN_FIFO_LEVELS structure
Output: None
Notes: Almost empty and Almost full should be set to 0x0010 and 0x00EF
respectively before use of FIFOS. The FIFO counts are compared to these levels
to set the value of the CHAN_STAT_TX_FF_AMT and
CHAN_STAT_RX_FF_AFL status bits and latch the CHAN_STAT_TX_AMT_LT
and CHAN_STAT_RX_AFL_LT latched status bits. See the definition of
UART_CHAN_FIFO_LEVELS below. Full definition can be found in the

 Embedded Solutions Page 22

‘CHAN_TXFIFO_LVL’ and the ‘CHAN_RXFIFO_LVL’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_LEVELS {

 USHORT AlmostFull;

 USHORT AlmostEmpty;

} UART_CHAN_FIFO_LEVELS, *PUART_CHAN_FIFO_LEVELS;

IOCTL_UART_CHAN_GET_FIFO_LEVELS

Function: Returns the transmitter almost empty and receiver almost full levels for the
channel.
Input: None
Output: UART_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call. See the definition of
UART_CHAN_FIFO_LEVELS above.

IOCTL_UART_CHAN_SET_FRAME_TIME

Function: Write to set Frame time
Input: ULONG
Output:
Notes: Programmable count to determine how long to wait without a new character
arriving for receiver to declare “end of packet”. Full definition can be found under
Register definitions under CHAN_FRAME_TIME in hardware manual

IOCTL_UART_CHAN_GET_FRAME_TIME

Function: Read to get Frame time
Input: None
Output: ULONG

 Embedded Solutions Page 23

IOCTL_UART_CHAN_GET_FIFO_COUNTS

Function: Returns the number of data words in the transmit and receive data
and packet-length FIFOs.
Input: None
Output: UART_CHAN_FIFO_COUNTS structure
Notes: The FIFOs are both 256 deep. See the definition of
UART_CHAN_FIFO_COUNTS below. Full definition can be found in the
‘CHAN_RX_FIFO_CNT’ AND ‘CHAN_TX_FIFO_CNT’ sections under Register
Definitions in the Hardware manual.

typedef struct _UART_CHAN_FIFO_COUNTS {

 USHORT TxDataCnt;

 USHORT TxPktCnt;

 USHORT RxDataCnt;

 USHORT RxPktCnt;

} UART_CHAN_FIFO_COUNTS, *PUART_CHAN_FIFO_COUNTS;

IOCTL_UART_CHAN_RESET_FIFOS

Function: Resets TX and/or RX FIFOs for specified channel.
Input: UART_FIFO_SEL
Output: None
Notes: Call the function with UART_TX, UART_RX, or UART_BOTH to reset the
desired FIFO. See Definition of UART_FIFO_SEL below.

typedef enum _UART_FIFO_SEL {

 UART_TX,

 UART_RX,

 UART_BOTH

} UART_FIFO_SEL, *PUART_FIFO_SEL;

IOCTL_UART_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle
returned from that call as the input to this IOCTL. The driver then obtains a
system pointer to the event and signals the event when a user interrupt is
serviced. The user interrupt service routine waits on this event, allowing it to
respond to the interrupt.

 Embedded Solutions Page 24

IOCTL_UART_CHAN_ENABLE_INTERRUPT

Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user
interrupts. The master interrupt enable is disabled in the driver interrupt service
routine when a user interrupt is serviced. Therefore this command must be run
after each user interrupt occurs to re-enable it.

IOCTL_UART_CHAN_DISABLE_INTERRUPT

Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_UART_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

IOCTL_UART_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the ISR from the last user
interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine
of the last interrupt caused by one of the enabled channel interrupts. The new
field is true if the Status has been updated since it was last read.

IOCTL_UART_CHAN_SWW_TX_FIFO

Function: Writes a single longword to TX FIFO.
Input: Data (unsigned long)
Output: None
Notes: Data is the longword to write. Full definition can be found in the
‘CHAN_UART_FIFO’ section under Register Definitions in the Hardware manual.

 Embedded Solutions Page 25

IOCTL_UART_CHAN_SWR_RX_FIFO

Function: Reads a single longword from RX FIFO.
Input: None
Output: Data (unsigned long)
Notes: Read data is the one written in above IOCTL.

IOCTL_UART_CHAN_WRITE_PKT_LEN

Function: Write a received packet-length value from the packet-length FIFO.
Input: PUSHORT
Output: None
Notes: Full definition can be found in the ‘CHAN_PACKET_FIFO’ section under
Register Definitions in the Hardware manual.

IOCTL_UART_CHAN_READ_PKT_LEN

Function: Reads a received packet-length value from the packet-length FIFO.
Input: None
Output: UART_PACKET_FIFO
Notes: UART_PACKET_FIFO includes parity errors, frame errors, Rx overflow
errors or Rx length overflow errors that occur.

typedef struct _UART_PACKET_FIFO {

 USHORT RX_PKT_FIFO;

 BOOLEAN ParErr;

 BOOLEAN FrmErr;

 BOOLEAN RxDataOvflErr;

 BOOLEAN RxPckOvflErr;

} UART_PACKET_FIFO, *PUART_PACKET_FIFO;

IOCTL_UART_CHAN_SET_TIMER

Function: Write to set Timer register
Input: ULONG
Output:
Notes: Programmable count to define a range used in the TxTimer32 function. Full
definition can be found in the Register definitions under CHAN_TX_TIMER_MOD in
hardware manual

 Embedded Solutions Page 26

IOCTL_UART_CHAN_GET_TIMER

Function: Read from Timer register
Input: None
Output: ULONG
Notes: Reads back the value written in the Timer register

IOCTL_UART_CHAN_GET_TIMER_CNT

Function: Read from Timer Count register.
Input: None
Output: ULONG
Notes: Allows user to monitor the current count in the TxTimer32 function

 Embedded Solutions Page 27

Write

PmcBis6Uart RAM data is written to the device using the write command. Writes
are executed using the function WriteFile() and passing in the handle to the
device opened with CreateFile(), a pointer to a pre-allocated buffer containing the
data to be written, an unsigned long integer that represents the size of that buffer
in bytes, a pointer to an unsigned long integer to contain the number of bytes
actually written, and a pointer to an optional Overlapped structure for performing
asynchronous IO.

Read

PmcBis6Uart RAM data is read from the device using the read command. Reads
are executed using the function ReadFile() and passing in the handle to the
device opened with CreateFile(), a pointer to a pre-allocated buffer that will
contain the data read, an unsigned long integer that represents the size of that
buffer in bytes, a pointer to an unsigned long integer to contain the number of
bytes actually read, and a pointer to an optional Overlapped structure for
performing asynchronous IO.

For PmcBis6Uart write and read are implemented with Kernel level write
and read for high performance.

 Embedded Solutions Page 28

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.
https://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at
fault. The driver has gone through extensive testing, and in most cases it will be
“cockpit error” rather than an error with the driver. When you are sure or at least
willing to pay to have someone help then call or e-mail and arrange to work with
an engineer. We will work with you to determine the cause of the issue.

Support

The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite B&C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

https://www.dyneng.com/warranty.html
mailto:sales@dyneng.com

