
DYNAMIC ENGINEERING
435 Park Dr., Ben Lomond, Calif. 95005
831-336-8891 Fax 831-336-3840

 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

User Manual

PMC-BiSerial-S311
Driver Documentation

Revision A
Corresponding Hardware: Revision 1

10-2000-0101

 Page 2 Electronics Design • Manufacturing Services

PMC-BiSerial-S311
Bi-directional Serial Data Interface
PMC Module

Dynamic Engineering
435 Park Drive
Ben Lomond, CA 95005
831- 336-8891
831-336-3840 FAX

This document contains information of proprietary
interest to Dynamic Engineering. It has been supplied
in confidence and the recipient, by accepting this
material, agrees that the subject matter will not be
copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure
that this manual is accurate and complete. Still, the
company reserves the right to make improvements or
changes in the product described in this document at
any time and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates,
uses, and can radiate radio frequency energy.
Operation of this equipment in a residential area is
likely to cause radio interference, in which case the
user, at his own expense, will be required to take
whatever measures may be required to correct the
interference.

Dynamic Engineering’s products are not authorized for
use as critical components in life support devices or
systems without the express written approval of the
president of Dynamic Engineering.

This product has been designed to operate with PMC
Module carriers and compatible user-provided
equipment. Connection of incompatible hardware is
likely to cause serious damage.

©2002 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revision A. Revised July 24, 2002.

 Page 3 Electronics Design • Manufacturing Services

Table of Contents

Introduction 6

Note 6

Driver Installation 6

Driver Startup 7

IO Controls 7
IOCTL_PB_S311_GET_STATUS 7
IOCTL_PB_S311_GET_SW_ID 8
IOCTL_PB_S311_SET_CONFIG 8
IOCTL_PB_S311_GET_CONFIG 8
IOCTL_PB_S311_SET_FIFO_LEVELS 8
IOCTL_PB_S311_GET_FIFO_LEVELS 9
IOCTL_PB_S311_SET_TX_CONFIG 9
IOCTL_PB_S311_GET_TX_CONFIG 9
IOCTL_PB_S311_SET_RX_CONFIG 9
IOCTL_PB_S311_GET_RX_CONFIG 10
IOCTL_PB_S311_SET_TERMINATIONS 10
IOCTL_PB_S311_GET_TERMINATIONS 10
IOCTL_PB_S311_START_TX 10
IOCTL_PB_S311_START_RX 10
IOCTL_PB_S311_STOP_TX 11
IOCTL_PB_S311_STOP_RX 11
IOCTL_PB_S311_GET_RX_COUNT 11
IOCTL_PB_S311_PUT_TX_DATA 11
IOCTL_PB_S311_GET_RX_DATA 12
IOCTL_PB_S311_GET_TX_DATA 12
IOCTL_PB_S311_PUT_RX_DATA 12
IOCTL_PB_S311_RESET_FIFOS 12
IOCTL_PB_S311_FORCE_INTERRUPT 12
IOCTL_PB_S311_REGISTER_EVENT 13
IOCTL_PB_S311_ENABLE_INTERRUPT 13

Write 13

Read 13

WARRANTY AND REPAIR 14

Service Policy 15
Out of Warranty Repairs 15

 Page 4 Electronics Design • Manufacturing Services

For Service Contact: 15

 Page 5 Electronics Design • Manufacturing Services

List of Figures

no figures in this document

 Page 6 Electronics Design • Manufacturing Services

Introduction
The Pb_s311 driver is a Windows NT driver for the PMC-Biserial-S311
board from Dynamic Engineering. This driver can control up to 10 boards in
a system. Each PMC-Biserial-S311 board transmits and receives a single
channel of serial data using the Northrop Grumman S-311 interface
protocol with EIA-RS-485 differential drivers and receivers. A separate
“Device Object” controls each PMC-Biserial-S311 board, and a separate
handle references each Device Object. IO Control calls (IOCTLs) are used to
configure the hardware and ReadFile() and WriteFile() calls are used to
transfer data to and from the device over the PCI bus.

A handle can be opened to a specific board in Win32 by using the
CreateFile() function call and passing in a Symbolic Link name. A Symbolic
Link is the name of the device recognized by Windows. For the Pb_s311
driver, Symbolic Link names are formed as Pb_s311n where n indicates
the zero based board number. E.g. the third board is Pb_s3112.

ReadFile() and WriteFile() are used to transfer data to/from a specific
board specified by passing the appropriate handle opened via the
CreateFile() function call. The amount of data transferred by either of these
calls is limited by the FIFO size, which is automatically detected when the
driver initializes.

Note
This documentation will provide information about all calls made to the
driver, and how the driver interacts with the device for each of these calls.
For more detailed information on the hardware implementation, refer to the
PMC-Biserial-S311 device user manual.

Driver Installation
There are several files provided in each driver drop. These files include
Pb_s311.sys, Pb_s311.reg, ddPb_s311.h, Pb_s311test.exe, and
Pb_s311test source files.

The Pb_s311.sys file is the binary driver file. In order to install the driver,
place this file in your Winnt\system32\drivers directory.

The Pb_s311.reg file is the Windows NT registry entry file. This file
contains the modifications to the Windows registry required to allow
Windows to recognize the driver. In order to install the driver, double click
on this file (or right click and select the Merge option in the context menu).
This will merge the PB_S311 entries required by the driver into the
Windows NT registry. Windows must be restarted after merging this file
into the registry for the driver to work.

 Page 7 Electronics Design • Manufacturing Services

The ddPb_s311.h file is the C header file that defines the Application
Interface (API) to the driver. This file is required at compile time by any
application that wishes to interface with the PMC-Biserial-S311 device. It is
not needed by the driver installation.

The Pb_s311test.exe file is a sample Windows NT console application that
makes calls into the PB_S311 driver. It is not required during the driver
installation.

Driver Startup
There are several tasks the PB_S311 driver must do when it is started. It
must scan all possible PCI buses to detect every PMC-Biserial-S311 device
in the system. It must create a “Device Object” for every board it finds. It
must initialize each of these Device Objects. It must register callbacks
(Interrupt Service Routines and Deferred Procedure Calls) with Windows.
Finally it must initialize the PMC-Biserial-S311.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs
refer to a single Device Object in the driver, which controls a single board.
IOCTLs are called using the Win32 function DeviceIoControl(), and passing
in the handle to the device opened with CreateFile(). IOCTLs generally have
input parameters, output parameters, or both. Often a custom structure is
used.

IOCTL_PB_S311_GET_STATUS
Function: Returns the board status.
Input: none
Output: ULONG
Notes: Returns Status information for a given board obtained from the
PB_S311_STAT0 register. This includes FIFO flags indicating the amount of
data in the transmit and receive FIFOs and latched interrupt status bits
indicating the cause of an interrupt. After the status is read, a value is
written back to this register to clear only the specific interrupt conditions
that were read. This will insure that no interrupt cause is missed due to
being asserted between the read and write cycles. See the bit definitions in
the DDPb_s311.h header file for more information.

 Page 8 Electronics Design • Manufacturing Services

IOCTL_PB_S311_GET_SW_ID
Function: Returns the user switch value.
Input: none
Output: ULONG
Notes: Returns the value set in the eight-position DIP switch on the PMC-
Biserial-S311. Note that only the lower six bits are connected due to pin
limitations of the Xilinx FPGA.

IOCTL_PB_S311_SET_CONFIG
Function: Sets the base configuration of the board.
Input: ULONG
Output: none
Notes: Controls the clock source and divisor for determining the transmit
reference clock frequency and controls the master interrupt enable. See
the bit definitions in the DDPb_s311.h header file for more information.

IOCTL_PB_S311_GET_CONFIG
Function: Returns the base configuration of the board.
Input: none
Output: ULONG
Notes: Returns the base configuration register value, excluding the Force
Interrupt and FIFO ld and enable bits. See the bit definitions in the
DDPb_s311.h header file for more information.

IOCTL_PB_S311_SET_FIFO_LEVELS
Function: Sets receive almost full and transmit almost empty FIFO levels.
Input: FIFO_LEVELS
Output: none
Notes: Sets the almost full level for the receive FIFO; the value is the
number of words below full that the PAF flag becomes asserted. Sets the
almost empty level for the transmit FIFO; the value is the number of words
above empty for which the PAE flag is asserted. The transmit and receive
state machines are stopped by this command, since normal FIFO data
accesses are disabled when these level registers are accessed. Values are
checked to not exceed the FIFO sizes.

 Page 9 Electronics Design • Manufacturing Services

IOCTL_PB_S311_GET_FIFO_LEVELS
Function: Returns receive almost full and transmit almost empty FIFO
levels.
Input: none
Output: FIFO_LEVELS
Notes: Returns the almost full level for the receive FIFO and the almost
empty level for the transmit FIFO. The transmit and receive state machines
are stopped by this command, since normal FIFO data accesses are
disabled when these level registers are accessed.

IOCTL_PB_S311_SET_TX_CONFIG
Function: Sets the transmitter configuration of the board.
Input: ULONG
Output: none
Notes: Controls the enabling of the transmit and almost empty Interrupts
and whether the ready signal is ignored or processed. See the bit
definitions in the DDPb_s311.h header file for more information.

IOCTL_PB_S311_GET_TX_CONFIG
Function: Returns the transmitter configuration of the board.
Input: none
Output: ULONG
Notes: Returns the transmit configuration register value including the start
bit. See the bit definitions in the DDPb_s311.h header file for more
information.

IOCTL_PB_S311_SET_RX_CONFIG
Function: Sets the receiver configuration of the board.
Input: ULONG
Output: none
Notes: Controls the enabling of the receive, overflow, and almost full
interrupts and whether the receive interrupt is asserted on every word
received or only words with a specific mode bit value. Also data filtering can
be enabled using the same mode bit definition bit. The testmode enable
needed for loading the receive FIFO from the PCI bus is also controlled with
this IOCTL. See the bit definitions in the DDPb_s311.h header file for more
information.

 Page 10 Electronics Design • Manufacturing Services

IOCTL_PB_S311_GET_RX_CONFIG
Function: Returns the receiver configuration of the board.
Input: none
Output: ULONG
Notes: Returns the receive configuration register value including the start
bit. See the bit definitions in the DDPb_s311.h header file for more
information.

IOCTL_PB_S311_SET_TERMINATIONS
Function: Sets the configuration of the driver terminations.
Input: ULONG
Output: none
Notes: Sets the configuration of the terminations for the IO lines. See the
bit definitions in the DDPb_s311.h header file for more information.

IOCTL_PB_S311_GET_TERMINATIONS
Function: Returns the configuration of the driver terminations.
Input: none
Output: ULONG
Notes: Returns the configuration of the terminations for the IO lines. See
the bit definitions in the DDPb_s311.h header file for more information.

IOCTL_PB_S311_START_TX
Function: Starts the transmitter state machine.
Input: none
Output: none
Notes: Sets the start bit for the transmitter, leaving all other configuration
bits the same.

IOCTL_PB_S311_START_RX
Function: Starts the receiver state machine.
Input: none
Output: none
Notes: Sets the start bit for the receiver, leaving all other configuration bits
the same.

 Page 11 Electronics Design • Manufacturing Services

IOCTL_PB_S311_STOP_TX
Function: Stops the transmitter state machine.
Input: none
Output: ULONG
Notes: Clears the start bit for the transmitter and returns the board
Status. This is used to abort a transmission. See the bit definitions in the
DDPb_s311.h header file for more information.

IOCTL_PB_S311_STOP_RX
Function: Stops the receiver state machine.
Input: none
Output: ULONG
Notes: Clears the start bit for the receiver and returns the received word
count. This will also clear the word count register, although the old count
remains latched until the next received word.

IOCTL_PB_S311_GET_RX_COUNT
Function: Returns the number of received words stored.
Input: none
Output: ULONG
Notes: Returns the received word count accumulated since the counter
was last reset. If data filtering is enabled, only the words that are stored
count towards the cumulative total. The counter is also cleared by this
command although the old count will remain until the next word is stored in
the FIFO.

IOCTL_PB_S311_PUT_TX_DATA
Function: Loads one data word into the transmit FIFO.
Input: ULONG
Output: none
Notes: Loads a single transmit data word into the transmit FIFO. This
IOCTL was used mainly for development until WriteFile() call was
implemented.

 Page 12 Electronics Design • Manufacturing Services

IOCTL_PB_S311_GET_RX_DATA
Function: Reads one data word from the receive FIFO.
Input: none
Output: ULONG
Notes: Reads a single receive data word from the receive FIFO. This IOCTL
was used mainly for development until ReadFile() call was implemented.

IOCTL_PB_S311_GET_TX_DATA
Function: Reads one data word from the transmit FIFO.
Input: none
Output: ULONG
Notes: Used for transmit FIFO loop-back testing.

IOCTL_PB_S311_PUT_RX_DATA
Function: Loads one data word into the receive FIFO.
Input: ULONG
Output: none
Notes: Used for receive FIFO loop-back testing. The testmode bit must be
set using the IOCTL_PB_S311_SET_RX_CONFIG call.

IOCTL_PB_S311_RESET_FIFOS
Function: Resets the transmit and receive FIFOs.
Input: none
Output: ULONG
Notes: Resets the transmit and receive FIFOs. This will clear all data and
reset the almost full and empty values to the default value of seven.
Returns the board status. See the bit definitions in the DDPb_s311.h
header file for more information.

IOCTL_PB_S311_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: none
Output: none
Notes: Causes an interrupt to be asserted on the PCI bus if the master
interrupt enable is set. This IOCTL is used for development, to test interrupt
processing.

 Page 13 Electronics Design • Manufacturing Services

IOCTL_PB_S311_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Event Handle
Output: none
Notes: The caller creates an event with CreateEvent() and supplies the
handle returned from that call as the input to this IOCTL. The driver then
obtains a system pointer to the event and signals the event when an
interrupt is serviced.

IOCTL_PB_S311_ENABLE_INTERRUPT
Function: Sets the master interrupt enable to true.
Input: none
Output: none
Notes: Sets the master interrupt enable, leaving all other bit values in the
base configuration register the same. This IOCTL is used in the user
interrupt processing function to re-enable the interrupts after they were
disabled in the driver interrupt service routine. This allows that function to
enable the interrupts without knowing the particulars of the other
configuration bits.

Write
Data to be sent from the transmitter is written to the transmit FIFO using a
WriteFile() call. The user supplies the device handle, a pointer to the buffer
containing the data, the number of bytes to write, a pointer to a variable to
store the amount of data actually transferred, and a pointer to an optional
Overlapped structure for performing asynchronous IO. The number of bytes
is checked to see if it exceeds the size of the FIFO and if not the command
is executed with successive writes to the Tx FIFO port. See Win32 help files
for details the of the WriteFile() call.

Read
Received data can be read from the receive FIFO using a ReadFile() call.
The user supplies the device handle, a pointer to the buffer to store the
data in, the number of bytes to read, a pointer to a variable to store the
amount of data actually transferred, and a pointer to an optional
Overlapped structure for performing asynchronous IO. The number of bytes
is checked to see if it exceeds the size of the FIFO and if not the command
is executed with successive reads from the Rx FIFO port. See Win32 help
files for the details of the ReadFile() call.

 Page 14 Electronics Design • Manufacturing Services

Warranty and Repair

Dynamic Engineering warrants this product to be free from defects under
normal use and service and in its original, unmodified condition, for a period
of one year from the time of purchase. If the product is found to be
defective within the terms of this warranty, Dynamic Engineering's sole
responsibility shall be to repair, or at Dynamic Engineering's sole option to
replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is
limited to that set forth herein. Dynamic Engineering disclaims and excludes
all other product warranties and product liability, expressed or implied,
including but not limited to any implied warranties of merchandisability or
fitness for a particular purpose or use, liability for negligence in
manufacture or shipment of product, liability for injury to persons or
property, or for any incidental or consequential damages.

Dynamic Engineering’s products are not authorized for use as critical
components in life support devices or systems without the express written
approval of the president of Dynamic Engineering.

 Page 15 Electronics Design • Manufacturing Services

Service Policy

Before returning a product for repair, verify as well as possible that the
driver is at fault. The driver has gone through extensive testing and in most
cases it will be “cockpit error” rather than an error with the driver. When
you are sure or at least willing to pay to have someone help then call the
Customer Service Department and arrange to speak with an engineer. We
will work with you to determine the cause of the issue. If the issue is one of
a defective driver we will correct the problem and provide an updated
module(s) to you [no cost]. If the issue is of the customer’s making
[anything that is not the driver] the engineering time will be invoiced to the
customer. Pre-approval may be required in some cases depending on the
customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. The current minimum repair charge
is $125. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
435 Park Dr.
Ben Lomond, CA 95005
831-336-8891
831-336-3840 fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

