
 Embedded Solutions Page 1

DYNAMIC ENGINEERING
150 DuBois St. Suite C, Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
 Est. 1988

User Manual

PMC-PARALLEL-TTL-BA17
Digital Parallel Interface

PMC Module
64 programmable IO

 COS Inputs
32 Inputs with TimeStamp, FIFO Storage, DMA Transfer

Revision A
Corresponding Hardware: Revision 1

10-2007-0101
FLASH 0301

 Embedded Solutions Page 2

PMC-PARALLEL-TTL-BA17
Digital Parallel Interface

PMC Module
Dynamic Engineering

150 DuBois St. Suite C, Santa Cruz CA 95060
831-457-8891 831-457-4793 FAX

This document contains information of proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the recipient, by accepting this material, agrees
that the subject matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort to ensure that this manual is accurate and
complete. Still, the company reserves the right to make improvements or changes in the
product described in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the application or use of the
device described herein.

The electronic equipment described herein generates, uses, and can radiate radio
frequency energy. Operation of this equipment in a residential area is likely to cause
radio interference, in which case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as critical components in life
support devices or systems without the express written approval of the president of
Dynamic Engineering.

This product has been designed to operate with PMC Module carriers and compatible
user-provided equipment. Connection of incompatible hardware is likely to cause
serious damage.

©2007-2008 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their respective manufacturers.
Manual Revision A. Revised 11/24/08

 Embedded Solutions Page 3

Table of Contents

PRODUCT DESCRIPTION 6

THEORY OF OPERATION 9

ADDRESS MAP 13

PROGRAMMING 15

Register Definitions 17
pmcparttl_BASE 17
pmcparttl_ID 19
pmcparttl_STATUS 20
pmcparttl_DirL 21
pmcparttl_DirU 21
pmcparttl_DatL 22
pmcparttl_DatU 22
pmcparttl_DatLreg 23
pmcparttl_DatUreg 23
pmcparttl_COSclk 24
pmcparttl_RisLreg 25
pmcparttl_RisUreg 25
pmcparttl_FallLreg 26
pmcparttl_FallUreg 26
pmcparttl_IntRisLreg 27
pmcparttl_IntRisUreg 27
pmcparttl_IntFallLreg 28
pmcparttl_IntFallUreg 28
pmcparttl_IntRisLstat 29
pmcparttl_IntRisUstat 29
pmcparttl_IntRisLstat 30
pmcparttl_IntRisUstat 30
pmcparttl_DR_L 31
pmcparttl_DR_U 31
pmcparttl_TIMESTAMP 32
pmcparttl_TIMESTAMPCNT 32
pmcparttl_ch0_base 33
pmcparttl_ch0_st 35
pmcparttl_ch0_brstin 37
pmcparttl_ch0_brstout 38
pmcparttl_ch0_swr 39
pmcparttl_ch0_rx_aecnt0,1,2 39
pmcparttl_ch0,_rx_afcnt0,1,2 40
pmcparttl_ch0_rx_ffcnt 40

 Embedded Solutions Page 4

LOOP-BACK 41

PMC MODULE LOGIC INTERFACE PIN ASSIGNMENT 42

PMC MODULE LOGIC INTERFACE PIN ASSIGNMENT 43

PMC MODULE FRONT PANEL IO INTERFACE PIN ASSIGNMENT 44

PMC MODULE BACKPLANE IO INTERFACE PIN ASSIGNMENT 45

APPLICATIONS GUIDE 46

Interfacing 46

Construction and Reliability 47

Thermal Considerations 47

Warranty and Repair 48

Service Policy 48

Out of Warranty Repairs 48

SPECIFICATIONS 49

ORDER INFORMATION 50

 Embedded Solutions Page 5

List of Figures

FIGURE 1 PMC-PARALLEL-TTL REAR VIEW 8
FIGURE 2 PMC-PARALLEL-TTL BLOCK DIAGRAM 10
FIGURE 3 PMC-PARALLEL-TTL INTERNAL ADDRESS MAP BASE FUNCTIONS 13
FIGURE 4 PMC-PARALLEL-TTL CHANNEL ADDRESS MAP 14
FIGURE 5 PMC-PARALLEL-TTL CONTROL PORT 0 BIT MAP 17
FIGURE 6 PMC-PARALLEL-TTL ID AND SWITCH BIT MAP 19
FIGURE 7 PMC-PARALLEL-TTL STATUS PORT BIT MAP 20
FIGURE 8 PMC-PARALLEL-TTL DIRECTION LOWER BIT MAP 21
FIGURE 9 PMC-PARALLEL-TTL DIRECTION UPPER BIT MAP 21
FIGURE 10 PMC-PARALLEL-TTL DATA IO LOWER BIT MAP 22
FIGURE 11 PMC-PARALLEL-TTL DATA IO UPPER BIT MAP 22
FIGURE 12 PMC-PARALLEL-TTL DATA REG LOWER BIT MAP 23
FIGURE 13 PMC-PARALLEL-TTL DATA REG UPPER BIT MAP 23
FIGURE 14 PMC-PARALLEL-TTL COS CLK CONTROL BIT MAP 24
FIGURE 15 PMC-PARALLEL-TTL RISING LOWER BIT MAP 25
FIGURE 16 PMC-PARALLEL-TTL RISING UPPER BIT MAP 25
FIGURE 17 PMC-PARALLEL-TTL FALLING LOWER BIT MAP 26
FIGURE 18 PMC-PARALLEL-TTL FALLING UPPER BIT MAP 26
FIGURE 19 PMC-PARALLEL-TTL INT RISING LOWER BIT MAP 27
FIGURE 20 PMC-PARALLEL-TTL INT RISING UPPER BIT MAP 27
FIGURE 21 PMC-PARALLEL-TTL INT FALLING LOWER BIT MAP 28
FIGURE 22 PMC-PARALLEL-TTL INT FALLING UPPER BIT MAP 28
FIGURE 23 PMC-PARALLEL-TTL RISING COS STATUS LOWER 29
FIGURE 24 PMC-PARALLEL-TTL RISING COS STATUS UPPER 29
FIGURE 25 PMC-PARALLEL-TTL FALLING COS STATUS LOWER 30
FIGURE 26 PMC-PARALLEL-TTL FALLING COS STATUS UPPER 30
FIGURE 27 PMC-PARALLEL-TTL DMA REG LOWER BIT MAP 31
FIGURE 28 PMC-PARALLEL-TTL DIRECTION UPPER BIT MAP 31
FIGURE 29 PMC-PARALLEL-TTL TIMESTAMP PRELOAD BIT MAP 32
FIGURE 30 PMC-PARALLEL-TTL TIMESTAMP COUNT BIT MAP 32
FIGURE 31 PMC-PARALLEL-TTL CHANNEL CONTROL REGISTER 33
FIGURE 32 PMC-PARALLEL-TTL CHANNEL STATUS PORT 35
FIGURE 33 PMC-PARALLEL-TTL WRITE DMA POINTER REGISTER 37
FIGURE 34 PMC-PARALLEL-TTL READ DMA POINTER REGISTER 38
FIGURE 35 PMC-PARALLEL-TTL RX/TX FIFO PORT 39
FIGURE 36 PMC-PARALLEL-TTL TX ALMOST EMPTY LEVEL REGISTER 39
FIGURE 37 PMC-PARALLEL-TTL RX ALMOST FULL LEVEL REGISTER 40
FIGURE 38 PMC-PARALLEL-TTL RX FIFO DATA COUNT PORT 40
FIGURE 39 PMC-PARALLEL-TTL PN1 INTERFACE 42
FIGURE 40 PMC-PARALLEL-TTL PN2 INTERFACE 43
FIGURE 41 PMC-PARALLEL-TTL FRONT PANEL INTERFACE 44
FIGURE 42 PMC-PARALLEL-TTL PN4 INTERFACE 45

 Embedded Solutions Page 6

Product Description
In embedded systems many of the interconnections are made with single ended TTL or
CMOS level signals. Depending on the system architecture an IP or a PMC will be the
right choice to make the connection. You have choices with carriers for cPCI, PCI,
VME, PC/104p and other buses for both PMC and IP mezzanine modules.

Usually the choice is based on other system constraints as both the PMC and IP can
provide the IO you require. Dynamic Engineering would be happy to assist in your
decision regarding architecture and other trade-offs with the PMC / IP decision.
Dynamic Engineering has carriers for IP and PMC modules for most architectures, and
is adding more as new solutions are requested, and required by our customers.

The PMC compatible PMC-Parallel-TTL has 64 independent digital IO. The high density
makes efficient use of PMC slot resources. The IO is available for system connection
through the front panel, via the rear [Pn4] connector, or both. A high density 68 pin
SCSI III front panel connector provides the front panel IO. The IO lines can be
protected with optional transorbs. The rear panel IO has a PIM and PIM Carrier
available for rear panel wiring options.

PMC-Parallel-TTL-BA17 is a customerized version of the standard PMC-Parallel-TTL
board. “BA17” is set to 3.3V, has rear panel IO, and an added feature of FIFO stored
COS values for the upper 32 IO lines. The COS rate is programmable and can be
based on the PLLA or the oscillator [50 MHz].

The storage function uses inputs from the COS detectors to determine when a new
transition has been detected. The 32 rising and 32 falling control bits allow software to
determine which channels are stored under what conditions. The data is stored as a
Rising Vector, Falling Vector, and TimeStamp. The FIFO is 12K deep allowing 4K
samples to be captured or more if DMA is enabled. The hardware can stream
indefinitely with DMA enabled.

The BA17 features are selectable. The standard register based, and COS functions are
available on unused [by BA17] pins and can be swapped with the BA17 functions under
software control.

The HDEterm68 http://www.dyneng.com/HDEterm68.html
can be used as a breakout for the front or rear panel IO. The HDEcabl68 provides a
convenient cable. http://www.dyneng.com/HDEcabl68.html Custom cables can be
manufactured to your requirements. Please contact Dynamic Engineering with your
specifications.

Each channel is programmable to be input or output on a channel-by-channel basis. All
64 IO channels can be used as interrupt generators. Interrupts are programmable to be

 Embedded Solutions Page 7

based on rising, falling and change of state [both] conditions. The interrupts are
maskable to allow polled operation as well.

The inputs are available unfiltered and after the transition detection. The transition
detection is programmable for clock rate. The local 50 MHz oscillator can be used or
the PLLA. The reference rate is divided by 10 for the COS rate to provide a fixed 10X
clock for the data loader function [COS data to FIFO]. By using a 10X clock transitions
can be captured on consecutive COS clocks and still be properly loaded into the FIFO.

For example, with the oscillator selected, the COS clock would be 5 MHz and the loader
will use the 50 Mhz from the oscillator.

All of the IO are routed through the FPGA to allow for custom applications that require
hardware intervention or specific timing- for example an automatic address or data
strobe to be generated. The initial model was register based [FLASH 0101]. The
design with revision 2 and later FLASH is DMA capable with a built in programmable
parallel data output and input function. The new features are designed to default to “not
used” to allow the new cards to be used with older customer software. The DMA
function can be used with customer requirements too. Please contact Dynamic
Engineering with your custom requirements. BA17 is design number 3 for the PMC-
Parallel-TTL with a corresponding FLASH of 03xx.

The IO are driven with open-drain high current drivers. When enabled, the high side is
driven with the device and augmented with pull-up resistors. When disabled the output
is pulled high with the resistors unless another device on the line is driving that line low.
The low side of the driver can sink 64+ mA. The high side drive is 32 mA plus the pull-
up current value. All IO have 2 pull-up locations per line. The default is for 470 ohms
installed into one location. The resistors are referenced to either 5V or 3.3V based on
a factory installed jumper. The multiple locations allow for pull-up strengths greater than
470 ohms, and to stay within the resistor pack wattage capabilities. The multiple packs
also allow for parallel combinations to create more options of specific pull-up values.
For custom models with additional pull-ups or alternate values please contact Dynamic
Engineering. The two columns of pull-up resistor locations are visible on the rear of the
card.

 Embedded Solutions Page 8

Figure 1 PMC-PARALLEL-TTL REAR VIEW

The registers are mapped as 32 bit words and support byte, word and 32 bit access. All
registers are read-writeable. The Linux and Windows® compatible drivers are available
to provide the system level interface for this design. Use standard C/C++ to control
your hardware or use the Hardware manual to make your own software interface. The
software manual is also available on-line. The Linux documentation is provided in-line
with the source code.

The basic functions of parallel IO and COS capture are designed into the FLASH 0101
“base” model. Additional features will be added to the base model by using a mux on
the output side to allow software to select the base or extended features. Data bit 0 is
the first extended feature and is a programmable output for the COS reference clock.
With software the output definition can be changed to drive the COS clock onto Data 0.
The user can use a scope to check that their set-up is what they want it to be, and then
likely return it to being a data bit. You can leave the output defined as a clock if desired.

FLASH 0301 has the additional features of utilizing the internal block RAM to create a
FIFO [0x3001 deep with pipeline] to support the input data from the COS function.
DMA can be used to move the data from the FIFO to the system memory. A 32 bit
TimeStamp counter plus control registers are also added to this version. The
TimeStamp counter can be stopped and started as well as preloaded with a user
defined count. The counter increments at the COS programmed rate.

PMC-PARALLEL-TTL is part of the PMC Module family of modular I/O components.
The PMC-PARALLEL-TTL conforms to the PMC standard. This guarantees
compatibility with multiple PMC Carrier boards. Because the PMC may be mounted on
different form factors, while maintaining plug and software compatibility, system
prototyping may be done on one PMC Carrier board, with final system implementation
on a different one.

 Embedded Solutions Page 9

Theory of Operation

The PMC-PARALLEL-TTL can be used for multiple purposes with applications in
telecommunications, control, sensors, IO, test; anywhere multiple independent or
coordinated IO are useful.

The PMC-PARALLEL-TTL features a Xilinx FPGA, and high current LVTH driver
devices. The FPGA contains the PCI interface and control required for the parallel
interface.

The Xilinx design incorporates the “PCI Core” and additional modules for DMA in
parallel with a direct register decoded programming model. The initial implementation
provides an enhanced feature set based on the PMC Parallel IO design. Additional
FLASH updates will provide DMA, pattern generation, pulse generation, and user
defined requirements.

The drivers are initialized to the off state and pull-ups on board hold the IO lines in the
‘high’ state. The direction registers are used to program the channel to be a driver or
not. The receivers are always enabled allowing local read-back of the transmitted data.

Data written to the IO registers can be placed on the bus. The master enable allows all
64 channels to be synchronized if desired. The master enable can be programmed “on”
to allow direct updates if 64 bit synchronization is not required.

For an IO with the direction bit set and master enabled: When a ‘0’ is written to any IO
line register position the corresponding line is driven low. When a ‘1’ is written to any IO
line register position that line is driven high by the local driver, and the output level will
be controlled by the termination resistor. The drivers are asymmetrical with 64 mA sink
and 32 mA source. The 470 Ω resistor to 3.3/5 will provide additional “source current”,
and level control when in “open drain” mode [programmed for receive].

 If the direction bit is set to input; the level will be controlled by external devices and the
attached pull-ups. The control register is read-writeable. The data register read
corresponds to the IO side. The register read-back is at an alternate address offset.
The register read-back is independent of the bus; the data read will always match the
data written. The IO data read will reflect the state of the bus and not necessarily the
state of the on-board drivers.

The read-back registers are clocked at a programmable rate with an internal clock
generator. If desired the internal clock can be replaced with an external source and an
enable. The basic option is available under SW control. If special programming is
needed please contact Dynamic Engineering for a custom FPGA implementation.

 Embedded Solutions Page 10

All the IO control and registers are instantiated within the FPGA, only the drivers and
receivers are separate devices. If desired, the IO lines can be specially programmed
to create custom timing pulses etc. For example if the interface is to put out an address
and then an address qualifier to strobe the address into the receiving hardware one of
the IO lines can be programmed to create a pulse some time after the address for the
IO registers is written to. The custom pulse will be more accurate for delay and duration
than a SW timing solution. The number of accesses to the card can be reduced as well
having the effect of greater through-put. Please contact Dynamic Engineering with your
requirements.

Figure 2 PMC-PARALLEL-TTL Block Diagram

 Embedded Solutions Page 11

PMC Parallel TTL BA17 features a programmable data path with DMA support. The
internal block RAM is configured to provide FIFO’s for receive [(3 x 4K + 4) x 32 RX].
The PLL or Oscillator is used as the RX [COS] state-machine reference.

For each bit programmed to be valid for Rising or Falling or both edges data will be
stored when an event has been detected. The loader function is enabled through the
channel control register. When enabled a detected transition in the upper 32 IO lines
will trigger the loader function. The outputs from the COS detectors are pipelined with
the first stage used to check for transitions, and the second to load to the FIFO. The
pipeline is necessary due to the number of bits to process [64 when up and down are
considered] and the muxing prior to the FIFO. A local “loader” state-machine checks for
an active bit and writes the Rising, Falling, and timestamp to the FIFO. The loader
state-machine runs with a 10X clock to allow for mux selection and writing to the FIFO
without missing data – consecutive clocks of the COS can be active with new edges to
load. The detector and loader have enough bandwidth to trigger, load, and rearm within
each COS clock cycle.

PCI

LO
A

D
E

R

FIFO

DMA

MUX

R2

F2

TS2

R1

F1

TS1

COS

T
IM

E
S

T
A

M
P

RISING

FALLING

DETECTOR

COS CLK

10X COS CLK

The hardware will pull data from the FIFO memory and store into the system memory
using DMA. The COS will load the FIFO and DMA will unload. The DMA function
operates at the PCI bus frequency. The COS frequency will determine the maximum

 Embedded Solutions Page 12

load rate into the FIFO.

With DMA and lower frequencies of COS transitions this mode can work well. At our 5
MHz example, we have 33x on clock rate and 3x on data loaded per COS clock when a
transition is detected. Using 50% of PCI BW as a guide the transitions can come at the
COS rate and the hardware will be right at 50%. Normally transitions won’t be
detected on every COS clock leading to a lower percentage of the bandwidth.

The DMA FIFO is 12Kx32 for RX leaving a lot of “rubber band” in the memory chain to
support the COS. As the transitions frequency is increased the multiplier can be
reduced to the point where the FIFO may go full on occasion before the DMA can
reduce the stored data. OS delays are the main culprit. More than 4096 transitions
can be detected and stored without any DMA movement. Since the transitions are not
known as a function of time it is beyond the scope of this manual to predict the storage
time within the FIFO when the OS is otherwise occupied.

The DMA programmable length is 32 bits => longer than most computer OS will allow in
one segment of memory. The DMA is scatter gather capable for longer lengths than the
OS max and for OS situations where the memory is not contiguous. With Windows
lengths of 4K are common while Linux can provide much larger spaces. Larger spaces
are slightly more efficient as there are potentially fewer initialization reads and reduced
overhead on the bus. A single interrupt can control the entire transfer. Head to tail
operation can also be programmed with two memory spaces with two interrupts per
loop.

 Embedded Solutions Page 13

Address Map
Function Offset
// PMC Parallel TTL definitions
#define pmcparttl_BASE 0x0000 // 0 PMC Parallel TTL base control register offset
#define pmcparttl_ID 0x0004 // 1 PMC Parallel TTL ID Register offset
#define pmcparttl_STATUS 0x0008 // 2 PMC Parallel TTL status Register offset
#define pmcparttl_DirL 0x000c // 3 PMC Parallel TTL Direction lower Register offset
#define pmcparttl_DirU 0x0010 // 4 PMC Parallel TTL Direction upper Register offset
#define pmcparttl_DatL 0x0014 // 5 PMC Parallel TTL Data lower Register, line data read
#define pmcparttl_DatU 0x0018 // 6 PMC Parallel TTL Data upper Register, line data read
#define pmcparttl_DatLreg 0x001c // 7 PMC Parallel TTL Data lower Register read-back
#define pmcparttl_DatUreg 0x0020 // 8 PMC Parallel TTL Data upper Register read-back
#define pmcparttl_COSclk 0x0024 // 9 PMC Parallel TTL COS Clock definition Register
//#define spare 0x0028 // 10 PMC Parallel TTL
#define pmcparttl_RisLreg 0x002c // 11 PMC Parallel TTL Rising lower Register
#define pmcparttl_RisUreg 0x0030 // 12 PMC Parallel TTL Rising upper Register
#define pmcparttl_FallLreg 0x0034 // 13 PMC Parallel TTL Falling lower Register
#define pmcparttl_FallUreg 0x0038 // 14 PMC Parallel TTL Falling upper Register
#define pmcparttl_IntRisLreg 0x003c // 15 PMC Parallel TTL Interrupt Enable Rising lower Register
#define pmcparttl_IntRisUreg 0x0040 // 16 PMC Parallel TTL Interrupt Enable Rising upper Register
#define pmcparttl_IntFallLreg 0x0044 // 17 PMC Parallel TTL Interrupt Enable Falling lower Register
#define pmcparttl_IntFallUreg 0x0048 // 18 PMC Parallel TTL Interrupt Enable Falling upper Register
#define pmcparttl_IntRisLstat 0x004c // 19 PMC Par TTL Interrupt Rising LWR Stat Rd, write = clear
#define pmcparttl_IntRisUstat 0x0050 // 20 PMC Par TTL Interrupt Rising UPR Stat Rd, write = clear
#define pmcparttl_IntFallLstat 0x0054 // 21 PMC Par TTL Interrupt Falling LWR Stat Rd, write = clear
#define pmcparttl_IntFallUstat 0x0058 // 22 PMC Par TTL Interrupt Falling UPR Stat Rd, write = clear
#define pmcparttl_DR_L 0x005C // 23 PMC Par TTL DMA - Register bit selection 31-0 R/W
#define pmcparttl_DR_U 0x0060 // 24 PMC Par TTL DMA - Register bit selection 63-32 R/W
#define pmcparttl_TIMESTAMP 0x0064 //25 PMC Par TTL TimeStamp Preload and readback
#define pmcparttl_TIMESTAMPCNT 0x0068 // 26 PMC Par TTL TimeStamp current count
Figure 3 PMC-PARALLEL-TTL Internal Address Map Base Functions

The address map provided is for the local decoding performed within PMC-Parallel-TTL.
The addresses are all offsets from a base address. The carrier board that the PMC is
installed into provides the base address. Dynamic Engineering prefers a long-word
oriented approach because it is more consistent across platforms.

The map is presented with the #define style to allow cutting and pasting into many
compilers “include” files.

The host system will search the PCI bus to find the assets installed during power-on
initialization. The VendorId = 0x10EE and the CardId = 0x0038 for the PMC-Parallel-
TTL-BA17.

 Embedded Solutions Page 14

Function Offset
// PMC Parallel TTL definitions
#define pmcparttl_ch0_base 0x0078 // 30 PMC Par TTL DMA path base control register channel 0
#define pmcparttl_ch0_st 0x007C// 31 PMC Par TTL channel 0 status, interrupt clear, data count
#define pmcparttl_ch0_brstin 0x0080// 32 PMC Par TTL channel 0 burst in control, unused BA17
#define pmcparttl_ch0_brstout 0x0084// 33 PMC Par TTL channel 0 burst out control,
#define pmcparttl_ch0_swr 0x0088// 34 PMC Par TTL ch 0 FIFO sin read from RX
#define pmcparttl_ch0_rx_aecnt0 0x008C// 35 PMC Par TTL ch 0 almost empty count register and rd-bk
#define pmcparttl_ch0_rx_afcnt0 0x0090 // 36 PMC Par TTL ch 0 almost full count register and rd-bk
#define pmcparttl_ch0_rx_aecnt1 0x0094// 37 PMC Par TTL ch 0 almost empty count register and rd-bk
#define pmcparttl_ch0_rx_afcnt1 0x0098 // 38 PMC Par TTL ch 0 almost full count register and rd-bk
#define pmcparttl_ch0_rx_aecnt2 0x009C// 39 PMC Par TTL ch 0 almost empty count register and rd-bk
#define pmcparttl_ch0_rx_afcnt2 0x00A0 // 40 PMC Par TTL ch 0 almost full count register and rd-bk
#define pmcparttl_ch0_rx_ffcnt 0x00A4 // 41 PMC Par TTL ch 0 rx fifo word count w/o pipeline

Figure 4 PMC-PARALLEL-TTL Channel Address Map

 Embedded Solutions Page 15

Programming

Programming the PMC-PARALLEL-TTL-BA17 requires only the ability to read and write
data in the host's PMC space.

Once the initialization process has occurred, and the system has assigned addresses to
the PMC-Parallel-TTL-BA17 card the software will need to determine what the address
space is for the PCI interface [BAR0]. The offsets in the address table are relative to
the system assigned BAR0 base address.

The next step is to initialize the PMC-Parallel-TTL-BA17. If the basic mode of direct
read and write operations is to be used then the default settings can be used except for
setting the master output enable and the direction bits corresponding to the channels to
transmit on.

If COS inputs are to be used the reference and divisor clocks may require programming.
In many cases the default settings will work. In addition the Rising, Falling, and
Interrupt capabilities need to be programmed. Once the settings are in place it is
recommended that the receive state registers are written to for clearing purposes as the
programming steps may cause phantom events to be captured.

One additional programming step will be to initialize the PLL to the user desired
frequency for COS capture should the PLL be used for that purpose.

For Windows™ and Linux systems the Dynamic Driver can be used. The driver will
take care of finding the hardware and provide an easy to use mechanism to program
the hardware. The Driver comes with reference software showing how to use the card
and reference frequency files to allow the user to duplicate the test set-up used in
manufacturing at Dynamic Engineering. Using simple, known to work routines is a good
way to get acquainted with new hardware.

To use the BA17 specific functions the Channel Control, Direction registers plus DMA
will need to be programmed. To use DMA, memory space from the system should be
allocated and the link list stored into memory. The location of the link list is written to
the BA17 to start the DMA. Please refer to the Burst IN and Burst Out register
discussions.

DMA should be set-up before starting the Loader function for the upper 32 bits. The
Rising and Falling enables for the IO of interest will be set to 1. The COS will
automatically convert the incoming signals on the enabled IO to a series of pulses that
act as status valid for 1 clock. The loader function will move the status to the FIFO
when at least 1 of the enabled lines is active. The status is stored Rising, Falling,
TimeStamp. The TimeStamp should also be initialized prior to starting.

 Embedded Solutions Page 16

The TimeStamp is a free running counter with enable and preload functions. The
preload can be used to set to a starting value offset or initialize to zero. The counter
rolls over from 0xFFFFFFFF to 0x00 and keeps going. You can preload with a negative
count to allow software time to match-up with the count.

TimeStamp uses the COS clock. Each count is 1 period of the COS clock. If you use
the oscillator reference of 50 MHz the granularity is 200 nS. If you use the PLLA clock
reference it will be the period of the programmed frequency x10.

The initial client request was 1-5 MHz for the COS range. The hardware has been
tested at 6 [60 on the PLL] with good results. Prior to the update the COS ran directly
from the OSC and operated at 50 MHz. The x10 loader requirement will reduce the
upper limit of the COS sampling.

DMA can be programmed with a specific length. The length can be as long as you want
within standard memory limitations. At the end of the DMA transfer the Host will receive
an interrupt. The receiver can be stopped and the FIFO reset to clear our any extra
data captured. For on-the-fly processing multiple shorter DMA segments can be
programmed, and at the interrupt restart DMA to point at the alternate segment to allow
processing on the previous one. This technique is sometimes refered to “ping-pong”.

 Embedded Solutions Page 17

Register Definitions

pmcparttl_BASE

[$00 parallel-io Control Register Port read/write]

DATA BIT DESCRIPTION

31-21 spare
20 bit 19 read-back of pll_dat register bit
19 pll_dat [write to PLL, read-back from PLL]
18 pll_s2
17 pll_sclk
16 pll_en
15-5 spare
4 Master Parallel Data Enable
3 spare
2 spare
1 Force Interrupt
0 Master Interrupt Enable

Figure 5 PMC-PARALLEL-TTL Control port 0 Bit Map

This is the base control register for the PMC Parallel TTL. The features common to all
channels are controlled from this port. Unused bits are reserved for additional new
features. Unused bits should be programmed ‘0’ to allow for future commonality.

Master Interrupt Enable when ‘1’ gates active interrupt requesting conditions onto
Interrupt Request A. When set to ‘0’ the interrupting functions are available as status
but no interrupt request is generated by the card to allow for polled operation.

Force Interrupt when ‘1’ and the master enabled will cause an interrupt request. The
interrupt can be cleared by clearing this bit or disabling the master interrupt enable or
both. Force Interrupt is used for test and software development purposes.

Master Parallel Data Enable is used to allow the upper and lower data to be
synchronized. The upper 32 bits and the lower 32 bits are not accessed at the same
time. If the user wants to have the upper and lower data change at the same time the
Master enable can be cleared to ‘0’, both halves of the data written and then the enable
set ‘1’. If synchronization is not an issue; program to ‘1’ as part of initialization.

pll_en: When this bit is set to a one, the signals used to program and read the PLL are
enabled.

 Embedded Solutions Page 18

pll_sclk/pll_dat : These signals are used to program the PLL over the I2C serial
interface. Sclk is always an output whereas Sdata is bi-directional. This register is
where the Sdata output value is specified or read-back.

pll_s2: This is an additional control line to the PLL that can be used to select additional
pre-programmed frequencies. Set to ‘0’ for most applications.

The PLL is programmed with the output file generated by the Cypress PLL
programming tool. [CY3672 R3.01 Programming Kit or CyberClocks R3.20.00
Cypress may update the revision from time to time.]

The .JED file is used by the Dynamic Driver to program the PLL. Programming the PLL
is fairly involved and beyond the scope of this manual. For clients writing their own
drivers it is suggested to get the Engineering Kit for this board including software, and to
use the translation and programming files ported to your environment. This procedure
will save you a lot of time. For those who want to do it themselves the Cypress PLL in
use is the 22393. The output file from the Cypress tool can be passed directly to the
Dynamic Driver [Linux or Windows] and used to program the PLL without user
intervention.

The reference frequency for the PLL is 50 MHz.

 Embedded Solutions Page 19

pmcparttl_ID
[$04 Switch and Design number port read only]

DATA BIT DESCRIPTION
31-24 spare
23-8 Design ID and Revision
7-0 DIP switch

Figure 6 PMC-PARALLEL-TTL ID and Switch Bit Map

The DIP Switch is labeled for bit number and ‘1’ ‘0’ in the silk screen. The DIP Switch
can be read from this port and used to determine which PMC Parallel TTL is which in a
system with multiple cards installed. The DIPswitch can also be used for other
purposes – software revision etc. The switch shown would read back 0x12.

The Design ID and Revision are defined by a 16 bit field allowing for 256 designs and
256 revisions of each. The BA17 design is 0x03 the current revision is 0x01.

The PCI revision is updated in HW to match the design revision. The board ID will be
updated for major changes to allow drivers to differentiate between revisions and
applications.

1

7 0

0

 Embedded Solutions Page 20

pmcparttl_STATUS
[$08 Board level Status Port read only]

DATA BIT DESCRIPTION

31 Interrupt Status
30-17
16 int_stat0
15-6 spare
5 INTR Falling
4 INTR Rising
3-1 spare
0 local interrupt

Figure 7 PMC-PARALLEL-TTL Status Port Bit Map

Local Interrupt for the base design, this bit is the same as the Intforce bit – unmasked.

INTR Rising - This is the logical OR of the COS outputs for the Rising Edge condition.
The RISING register will select which bits are enabled. If any of the enabled bits are
active this bit is set. The status is captured before the master interrupt enable. If the
master interrupt enable is set an interrupt will be generated if this condition is true.

INTR Falling - This is the logical OR of the COS outputs for the Falling Edge condition.
The Falling register will select which bits can be active [enabled]. If any of the enabled
bits capture a falling edge this bit will be set. The status is captured before the master
interrupt enable. If the master interrupt enable is set an interrupt will be generated if this
condition is true.

Int_Stat0/1 – This is the local masked not board level masked interrupt from channel 0.
Int_Stat0/1 = DMA Write and DMA Write mask or DMA Read and DMA Read Mask or
(IntForce or TX request) and Channel 0/1 mask. This bit will tell the SW if any channel
0/1 asset could be requesting an interrupt. If the master interrupt enable is set an
interrupt will be generated if this condition is true.

Interrupt Status – Set if the PCI interrupt is asserted. This bit can be checked to
determine if this card is causing an interrupt to the system. If set the other bits can be
checked to see which feature(s) of the board need to be serviced. Secondary reads to
the COS or Channel will determine the exact type of interrupt.

 Embedded Solutions Page 21

pmcparttl_DirL
[$0C Direction Register bits 31-0 read – write]

DATA BIT DESCRIPTION

31-0 DIR31-0

Figure 8 PMC-PARALLEL-TTL Direction Lower Bit Map

The lower 32 bits of the parallel port direction are controlled with this port. When reset
this port is cleared 0x00000000. All IO are set to read [inputs]. To use one or more of
the IO for outputs; program the corresponding direction bit(s) to ‘1’.

pmcparttl_DirU
[$10 Direction Register bits 63-32 read – write]

DATA BIT DESCRIPTION

31-0 DIR63-32

Figure 9 PMC-PARALLEL-TTL Direction Upper Bit Map

The upper 32 bits of the parallel port direction are controlled with this port. When reset
this port is cleared 0x00000000. All IO are set to read [inputs]. To use one or more of
the IO for outputs; program the corresponding direction bit(s) to ‘1’.

Once a Direction bit is set to output the data in the corresponding output holding register
bit is broadcast on that IO line. The data in the holding register will match the data in
the data output register if the master parallel enable bit is set. If initial states are
important you may want to program the initial data and enable it before enabling the
direction bits.

 Embedded Solutions Page 22

pmcparttl_DatL
[$14 Data IO Port read/write]

DATA BIT DESCRIPTION

31-0 Data IO 31-0

Figure 10 PMC-PARALLEL-TTL Data IO Lower Bit Map

pmcparttl_DatU
[$18 Data IO Port read/write]

DATA BIT DESCRIPTION

31-0 Data IO 63-32

Figure 11 PMC-PARALLEL-TTL Data IO Upper Bit Map

This port is really a combined Data Output port and a Data Input port. The data to be
transmitted is written to the Data Output Port side of the Data Register. The data to be
read from the IO are read from Data Input side of the Data register. Read back from the
Data Output port is done though the separate “datareg” port.

The data read from the data register is a direct read of the state of the IO lines. The bits
are not modified for level or transition etc. Some bits may be defined as outputs. The
input will match the output definition in this case. Local loop-back can be performed for
the bits where outputs are defined. The inputs will match the state of the system when
external devices can drive the input lines. The input bits can be masked out of the data
word to reduce the data to external inputs.

The output bits are driven onto the IO for the bits that are enabled with the direction
control register, and when the master parallel enable is set. For bits without the
direction register bit set there are no side effects. The direction register will act as a
mask for the data register.

 Embedded Solutions Page 23

pmcparttl_DatLreg
[$1C Data Reg Port read only]

DATA BIT DESCRIPTION
31-0 Data IO 31-0

Figure 12 PMC-PARALLEL-TTL Data Reg Lower Bit Map

pmcparttl_DatUreg
[$20 Data Reg Port read only]

DATA BIT DESCRIPTION
31-0 Data IO 63-32

Figure 13 PMC-PARALLEL-TTL Data Reg Upper Bit Map

Data written to the Data IO registers can be read back through this port. The register is
read back instead of the IO side when accessing this port. The data will match the state
of the data output bits written to the output side of the Data IO register.

 Embedded Solutions Page 24

pmcparttl_COSclk
[$24 COS clock definition port read -write]

DATA BIT DESCRIPTION

15 Data Out 0 Enable
14-13 CLOCK PRE-SELECTOR
12 CLOCK POST-SELECTOR
11-0 DIVISOR

Figure 14 PMC-PARALLEL-TTL COS Clk Control Bit Map

Unused for BA17 – PLL or Oscillator choice made through channel control
register.

Data Out 0 Enable when set and the corresponding Direction bit is set will drive the
COS clock out on Data bit 0. An oscilloscope can be used to verify the frequency
setting that is programmed with the COSclk register.

CLOCK PRE-SELECTOR
00 PCI Clock
01 Oscillator
10 External Clock
11 PCI Clock
The clock pre-selector is used to select which reference clock to use with the divisor
hardware (clock source). The base design oscillator rate is 50 MHz. The external
clock can be any TTL level source driven onto the External Clock input line. The clock
should be free running to be used for this purpose.

POST-SELECTOR when '1' sets the output clock to the divided clock, when '0' sets the
output clock to the pre-selector reference value (clock source).

DIVISOR[11-0] are the clock divisor select bits. The clock source is divided by a 12-bit
counter. The output frequency is {reference / [2(n+1)]}, n>1. The counter divides by
N+1 due to counting from 0 to n before rolling over. The output is then divided by 2 to
produce a square wave output.

The desired frequency of 1 MHz. Is achieved by selecting Osc reference, divided clock
and a factor of 50 with the standard 50 MHz oscillator. 2(N+1) = 50 => N = 24. 0x3018
would be the correct value to write to the COSclk.

 Embedded Solutions Page 25

pmcparttl_RisLreg
$2C Rising Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising 31-0

Figure 15 PMC-PARALLEL-TTL Rising Lower Bit Map

pmcparttl_RisUreg
$30 Rising Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising 63-32

Figure 16 PMC-PARALLEL-TTL Rising Upper Bit Map

The Rising control register bits correspond to the input data bits. All IO can be set-up for
COS activity even if defined as an output. In most cases the output bits will be set to ‘0’
for the Rising register. When set ‘1’ and the corresponding input bit transitions from low
to high the COS register of rising activity will be have the corresponding bit set. If the
separate interrupt enable bit is also set then an interrupt can be generated. The Rising
register is a control register. The COS data is read back separately.

 Embedded Solutions Page 26

pmcparttl_FallLreg
$34 Rising Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling 31-0

Figure 17 PMC-PARALLEL-TTL Falling Lower Bit Map

pmcparttl_FallUreg
$38 Rising Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling 63-32

Figure 18 PMC-PARALLEL-TTL Falling Upper Bit Map

The Falling control register bits correspond to the input data bits. All IO can be set-up
for COS activity even if defined as an output. In most cases the output bits will be set to
‘0’ for the Falling register. When set ‘1’ and the corresponding input bit transitions from
High to Low the COS register of falling activity will be have the corresponding bit set. If
the separate interrupt enable bit is also set then an interrupt can be generated. The
Falling register is a control register. The COS data is read back separately.

 Embedded Solutions Page 27

pmcparttl_IntRisLreg
$3C Rising Interrupt Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising Int En 31-0

Figure 19 PMC-PARALLEL-TTL Int rising Lower Bit Map

pmcparttl_IntRisUreg
$40 Rising Interrupt Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising Int En 63-32

Figure 20 PMC-PARALLEL-TTL int Rising Upper Bit Map

The Rising Interrupt Enable control register bits correspond to the input data bits. All IO
can be set-up for COS activity even if defined as an output. In most cases the output
bits will be set to ‘0’ for the Rising Interrupt Enable register. When set ‘1’ and the
corresponding Rising bit is captured by the COS register an interrupt can be generated.
Please note that the master interrupt enable will also need to be set for the interrupt to
be requested.

 Embedded Solutions Page 28

pmcparttl_IntFallLreg
$44 Falling Interrupt Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling Int En 31-0

Figure 21 PMC-PARALLEL-TTL Int Falling Lower Bit Map

pmcparttl_IntFallUreg
$48 Falling Interrupt Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling Int En 63-32

Figure 22 PMC-PARALLEL-TTL int Falling Upper Bit Map

The Falling Interrupt Enable control register bits correspond to the input data bits. All IO
can be set-up for COS activity even if defined as an output. In most cases the output
bits will be set to ‘0’ for the Falling Interrupt Enable register. When set ‘1’ and the
corresponding falling bit is captured by the COS register an interrupt can be generated.
Please note that the master interrupt enable will also need to be set for the interrupt to
be requested.

 Embedded Solutions Page 29

pmcparttl_IntRisLstat
$4C Rising Status Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising COS bits 31-0

Figure 23 PMC-PARALLEL-TTL Rising COS Status Lower

pmcparttl_IntRisUstat
$50 Rising Status Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Rising COS bits 63-32

Figure 24 PMC-PARALLEL-TTL Rising COS status upper

The COS captured for those bits enabled with the Rising register are held in this
register. The bits are held until cleared. Bits are cleared by writing to the register with
the corresponding bit or bits set. Writing to the register with the data read will clear the
bits the software has read, and not clear the bits not set at the time of reading. This is
the recommended practice to avoid conflicts. It is recommended to write to all bits
[clear] after setting the COS Rising and Direction bits to clear any potential COS status
generated by set-up.

 Embedded Solutions Page 30

pmcparttl_IntRisLstat
$54 Falling Status Lower Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling COS Status bits 31-0

Figure 25 PMC-PARALLEL-TTL Falling COS Status Lower

pmcparttl_IntRisUstat
$58 Falling Status Upper Control Register Port read/write

DATA BIT DESCRIPTION

31-0 Falling COS Status bits 63-32

Figure 26 PMC-PARALLEL-TTL Falling COS status upper

The COS captured for those bits enabled with the Falling register are held in this
register. The bits are held until cleared. Bits are cleared by writing to the register with
the corresponding bit or bits set. Writing to the register with the data read will clear the
bits the software has read, and not clear the bits not set at the time of reading. This is
the recommended practice to avoid conflicts. It is recommended to write to all bits
[clear] after setting the COS Falling and Direction bits to clear any potential COS status
generated by set-up.

 Embedded Solutions Page 31

pmcparttl_DR_L
[$0x5C DMA Register bits 31-0 read – write]

DATA BIT DESCRIPTION

31-0 DMA or Register control 31-0

Figure 27 PMC-PARALLEL-TTL DMA Reg Lower Bit Map

Set to 0 for BA17 operation.

The lower 32 bits of the DMA / Register selection are controlled with this port. When
reset this port is cleared 0x00000000. All IO are set to register control. To use one or
more of the IO for DMA controlled functions; program the corresponding direction bit(s)
to ‘1’.

pmcparttl_DR_U
[$60 DMA Register bits 63-32 read – write]

DATA BIT DESCRIPTION

31-0 DMA or Register control 63-32

Figure 28 PMC-PARALLEL-TTL Direction Upper Bit Map

Set to 0 for BA17 operation.

The upper 32 bits of the DMA / Register selection are controlled with this port. When
reset this port is cleared 0x00000000. All IO are set to register control. To use one or
more of the IO for DMA controlled functions; program the corresponding direction bit(s)
to ‘1’.

To use the DMA function of programmed parallel data output, the direction register bits
and DR register bits corresponding to those outputs must be set to ‘1’. The Direction
bits enable the IO, and the DR bits select the State Machine output path instead of the
Register path. Please note that the bits are selected on a bit by bit basis. Pick the
closest larger size with the state-machine and the actual size with the DR and Direction
bits. Any unused bits [by the state machine with masking] can be used as registered IO
or COS inputs.

 Embedded Solutions Page 32

pmcparttl_TIMESTAMP
[$64 TimeStamp Preload read – write]

DATA BIT DESCRIPTION

31-0 Preload value write, Register value read

Figure 29 PMC-PARALLEL-TTL TimeStamp Preload Bit Map

The TimeStamp counter is preloaded by writing to this register. The value is stored into
a preload register and held until overwritten. The TimeStamp Counter runs on the COS
clock. The register holds the data and allows the COS clock to load the counter with the
new current value. The preload can be done at anytime. It is recommended to disable
the counter in the channel control register prior to initializing to a new value.

Preload values can be anything within the 32 bit range. Numbers close to the rollover
count will act as a negative preload in the sense that the counter will count for N periods
and then start at 0. A negative preload can be used to offset the start and allow for
some synchronization options depending on your system.

Each count is 1 period of the COS clock. The roll over time will be 4,294,967,295 *
period as defined by the oscillator [50 MHz/10 = 200 nS or PLLA/10]. The relative time
between events can be determined by subtracting the timestamps and multiplying by
the period. The absolute time can be determined by the zero time plus the count times
the period.

Reading back from this register returns the preload value not the current count of the
TimeStamp.

 pmcparttl_TIMESTAMPCNT
[$68 TimeStamp Count read only]

DATA BIT DESCRIPTION

31-0 Current TimeStamp Count

Figure 30 PMC-PARALLEL-TTL TimeStamp Count Bit Map

The count after the first pipeline delay is sampled on the PCI clock and saved into a
register. This read only value can be used to determine the local time and potentially

 Embedded Solutions Page 33

for rate checking. If the PLL is set to 10 MHz the COS will be at 1 MHz. If a system
timer is set for 1 mS then the count will be approximately 1000 if the count is read after
the system timer expires. Caution may need to be exercised interpreting the results as
the BA17 timer is likely more accurate than the system timer.

pmcparttl_ch0_base

[0x78] Channel Control Register (read/write)

Channel Control Register

Data Bit Description
19 BI IDLE

 18 BO IDLE
 17 TX IDLE
 16 RX IDLE
 15

14 CLK RX Sel
13
12
11 spare
10
9
8
7 Enable RX
6
5 Force Interrupt
4 Channel Interrupt Enable
3 Read DMA Interrupt Enable
2 Write DMA Interrupt Enable
1
0 FIFO Reset

Figure 31 PMC-PARALLEL-TTL channel Control Register

The bit positions for the BA17 have been selected to allow minimal changes from
BA16 SW already in place. The TX bits have no meaning and should be set to ‘0’
when accessing this register.

FIFO Reset: When set to a one, the transmit and receive FIFOs will be reset. When
these bits are zero, normal FIFO operation is enabled. In addition the TX and RX State
Machine is also reset.

 Embedded Solutions Page 34

Write/Read DMA Interrupt Enable: These two bits, when set to one, enable the
interrupts for DMA writes and reads respectively. The DMA interrupts are not affected
by the Master Interrupt Enable.

Channel Interrupt Enable: When this bit is set to a one, all enabled interrupts (except
the DMA interrupts) will be gated through to the PCI interface level of the design; when
this bit is a zero, the interrupts can be used for status without interrupting the host. The
channel interrupt enable is for the channel level interrupt sources only. An additional
board level master interrupt enable is located in the Base register. The board level
master must also be enabled to gate the interrupt through to the host.

Force Interrupt: When this bit is set to a one, a system interrupt will occur provided the
Channel Interrupt and master interrupt enables are set. This is useful for interrupt
testing.

Enable RX: When set ‘1’ will start the RX function. The RX function is the use of the
upper 32 IO as COS values to load into the RX FIFO. The bits actually tested are
controlled by the RISING and FALLING upper values. The control bits for the RX
operation should be selected first to guarantee correct operation as the RX reference
rate may be different from the PCI clock rate. The receiver function will write data to the
RX FIFO until software disables the data capture.

Clock RX Select when ‘1’ Selects PLL A reference clock to be used for COS. When ‘0’
the oscillator [50 MHz] is selected. Remember to program the PLLA prior to selecting
this option. Please note that HW reduces the PLLA output by a factor of 10. To select
a COS clock and TimeStamp of X program PLLA for 10X. The data loader function
uses PLLA for a 10X reference.

RX IDLE is set when the state-machine is in the idle state. When lower clock rates are
used it may take a while to clean-up and return to the idle state. If SW has cleared the
start bit to terminate the reception,the SW can use the IDLE bit to determine when the
HW has completed its task and returned.

 Embedded Solutions Page 35

BO and BI Idle are Burst Out and Burst In IDLE state status for the Receive and
Transmit DMA actions. The bits will be 1 when in the IDLE state and 0 when
processing a DMA. A new DMA should not be launched until the State machine is back
in the IDLE state. Please note that the direction implied in the name has to do with the
DMA direction – Burst data into the card for TX and burst data out of the card for
Receive. RX is only used on BA17.

pmcparttl_ch0_st

[0x7C,A4] Channel Status Read/Clear Latch Write Port

Channel Status Register

Data Bit Description
31 Channel Interrupt Active

30-16 data count with pipeline
15 Read DMA Interrupt Occurred
14 Write DMA Interrupt Occurred
13 Read DMA Error Occurred
12 Write DMA Error Occurred
11 FIFO Overrun error
10 RX FIFO Full 0
9 RX FIFO Almost Full 2
8 RX FIFO Almost Empty 2
7 RX FIFO Empty 2
6 RX FIFO Full 1
5 RX FIFO Almost Full 1
4 RX FIFO Empty 1
3 RX FIFO Full 0
2 RX FIFO Almost Full 0
1 RX FIFO Almost Empty 0
0 RX FIFO Empty 0

Figure 32 PMC-Parallel-TTL Channel STATUS PORT

BA17 FIFO: Three 4K x 32 FIFO’s are used to create a 12K FIFO. The hardware
automatically moves data stored into FIFO 0 into FIFO 1 when there is room and again
from FIFO1 to FIFO 2 when there is room. When FIFO1 is full the entire FIFO is full,
and when FIFO 2 is empty the entire FIFO is empty. Please see note about pipeline
below. The data is move at 2X the PCI clock rate and has a sophisticated transfer
algorithm that allows burst mode between FIFO’s when not almost full or empty and
uses single transfers when close to the boundary conditions.

The block RAM used to create FIFO’s uses one location for “overhead” so 4K is really

 Embedded Solutions Page 36

4095. The pipeline required to support DMA transfers is 4 deep. 4005 * 3 + 4 = 12289
locations.

Please note with the Receive side status; the status reflects the state of the FIFO and
does not take the 4 deep pipeline into account. For example the FIFO may be empty
and there may be valid data within the pipeline. The data count is the combined FIFO
and pipeline value and can also be used for read size control.

RX FIFO Empty[0,1,2]: When a one is read, the FIFO contains no data; when a zero is
read, there is at least one data word in the FIFO.

RX FIFO Almost Empty[1,2]: When a one is read, the number of data words in the data
FIFO is less than or equal to the value written to the corresponding RX_AMT_LVL
register; when a zero is read, the FIFO level is more than that value.

Receive FIFO Almost Full[0,1,2]: When a one is read, the number of data words in the
receive data FIFO is greater or equal to the value written to the RX_AFL_LVL register;
when a zero is read, the FIFO level is less than that value.

Receive FIFO Full[0,1,2]: When a one is read, the receive data FIFO is full; when a zero
is read, there is room for at least one more data-word in the FIFO.

FIFO Overflow Error Occurred: When a one is read, an error has been detected. This
will occur if FIFO 0 is full when the loader function tries to write to it. A zero indicates
that no error has occurred. This bit is latched and can be cleared by writing back to the
Status register with a one in the appropriate bit position.

Write/Read DMA Error Occurred: When a one is read, a write or read DMA error has
been detected. This will occur if there is a target or master abort or if the direction bit in
the next pointer of one of the chaining descriptors is incorrect. A zero indicates that no
write or read DMA error has occurred. These bits are latched and can be cleared by
writing back to the Status register with a one in the appropriate bit position.

Write/Read DMA Interrupt Occurred: When a one is read, a write/read DMA interrupt is
latched. This indicates that the scatter-gather list for the current write or read DMA has
completed, but the associated interrupt has yet to be processed. A zero indicates that
no write or read DMA interrupt is pending.

Channel Interrupt Active: When a one is read, it indicates that a system interrupt is
potentially asserted caused by an enabled channel interrupt condition. A zero indicates
that no system interrupt is pending from an enabled channel interrupt condition. The
Board level master interrupt enable will also need to be asserted to allow the active
channel interrupt to become an interrupt request.

 Embedded Solutions Page 37

pmcparttl_ch0_brstin

[0x80,A8] Write DMA Pointer (write only)

DMA Pointer Address Register

Data Bit Description
31-2 First Chaining Descriptor Physical Address

 1 direction [0]
 0 end of chain

Figure 33 PMC-Parallel-TTL Write DMA pointer register

UNUSED for BA17: This write-only port is used to initiate a scatter-gather write [TX]
DMA. When the address of the first chaining descriptor is written to this port, the DMA
engine reads three successive long words beginning at that address. Essentially this
data acts like a chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer containing the data
to read into the device, the second is the length in bytes of that block, and the third is
the address of the next chaining descriptor in the list of buffer memory blocks. This
process is continued until the end-of-chain bit in one of the next pointer values read
indicates that it is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:
1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘0’ for Burst In DMA in all chaining descriptor
locations.

 Embedded Solutions Page 38

pmcparttl_ch0_brstout

[0x84] Read DMA Pointer (write only)

DMA Pointer Address Register

Data Bit Description
31-2 First Chaining Descriptor Physical Address

 1 direction [1]
 0 end of chain

Figure 34 PMC-Parallel-TTL Read DMA pointer register

This write-only port is used to initiate a scatter-gather read [RX] DMA. When the
address of the first chaining descriptor is written to this port, the DMA engine reads
three successive long words beginning at that address. Essentially this data acts like a
chaining descriptor value pointing to the next value in the chain.

The first is the address of the first memory block of the DMA buffer to write data from
the device to, the second is the length in bytes of that block, and the third is the address
of the next chaining descriptor in the list of buffer memory blocks. This process is
continued until the end-of-chain bit in one of the next pointer values read indicates that it
is the last chaining descriptor in the list.

All three values are on LW boundaries and are LW in size. Addresses for successive
parameters are incremented. The addresses are physical addresses the HW will use
on the PCI bus to access the Host memory for the next descriptor or to read the data to
be transmitted. In most OS you will need to convert from virtual to physical. The length
parameter is a number of bytes, and must be on a LW divisible number of bytes.

Status for the DMA activity can be found in the channel control register and channel
status register.

Notes:
1. Writing a zero to this port will abort a write DMA in progress.
2. End of chain should not be set for the address written to the DMA Pointer

Address Register. End of chain should be set when the descriptor follows the
last length parameter.

3. The Direction should be set to ‘1’ for Burst Out DMA in all chaining descriptor
locations.

 Embedded Solutions Page 39

pmcparttl_ch0_swr

[0x88] Write TX/Read RX FIFO Port

RX and TX FIFO Port

Data Bit Description
31-0 FIFO data word

Figure 35 PMC-Parallel-TTL RX/TX FIFO Port

This port is used to make single-word accesses from the RX FIFO. Data read from this
port will no longer be available for DMA transfers.

pmcparttl_ch0_rx_aecnt0,1,2

[0x8C, 94, 9C] RX almost-empty level 0 (read/write)

RX Almost-Empty Level Register

Data Bit Description
31-16 Spare

15-0 RX FIFO Almost-Empty Level

Figure 36 PMC-Parallel-TTL TX ALMOST EMPTY LEVEL register

This read/write port accesses the receiver almost-empty level register. When the
number of data words in the receive data FIFO is equal or less than this value, the
almost-empty status bit will be set. The register is R/W for 16 bits. The mask is valid
for a size matching the depth of the FIFO. 4k x32 is the RX FIFO per FIFO for a 12 bit
valid count range [11-0]. Recommend to set to 16 of boundary for load function [0x10]

 Embedded Solutions Page 40

pmcparttl_ch0,_rx_afcnt0,1,2

[0x90, 98, A0] RX almost-full level (read/write)

RX Almost-Full Level Register

Data Bit Description
31-16 Spare

15-0 RX FIFO Almost-Full Level

Figure 37 PMC-Parallel-TTL RX ALMOST FULL LEVEL register

This read/write port accesses the receiver almost-full level register. When the number
of data words in the receive data FIFO is equal or greater than this value, the almost-full
status bit will be set. The register is R/W for 16 bits. The mask is valid for a size
matching the depth of the FIFO. 4k x32 is the RX FIFO for a 12 bit valid count range
[11-0]. Recommend setting to 16 off the end count [0xFF0] for each FIFO to support
loader function.

pmcparttl_ch0_rx_ffcnt

[0xA4] RX FIFO data count (read only)

RX FIFO Data Count Port

Data Bit Description
31-14 Spare

13-0 RX Data Words Stored

Figure 38 PMC-Parallel-TTL RX fifo data count Port

This read-only register port reports the number of 32-bit data words in the receive FIFO
chain. The channel status register contains the combined pipeline and FIFO count.
The size depends on the FIFO size. This design has 4095 locations possible in each
FIFO for 12,285 total [0x2FFD].

 Embedded Solutions Page 41

Loop-back
The Engineering kit includes reference software, utilizing external loop-back tests. The
PMC-Parallel-TTL BA17 uses Pn4.

PCIBPMC was used for the carrier using the rear SCSI connector tied to Pn4 on the
BA17. HDEterm68 was used to provide the loop-back. SCSI cabling between the
PCIBPMC and HDEterm68. The Pin numbers are for the interconnections on the
HDEterm68. The IO names can be used to accommodate a different set-up.

Signal From To Signal
IO_0 pin 1 pin 17 IO_32
IO_1 pin 35 pin 51 IO_33
IO_2 pin 2 pin 18 IO_34
IO_3 pin 36 pin 52 IO_35
IO_4 pin 3 pin 19 IO_36
IO_5 pin 37 pin 53 IO_37
IO_6 pin 4 pin 20 IO_38
IO_7 pin 38 pin 54 IO_39
IO_8 pin 5 pin 21 IO_40
IO_9 pin 39 pin 55 IO_41
IO_10 pin 6 pin 22 IO_42
IO_11 pin 40 pin 56 IO_43
IO_12 pin 7 pin 23 IO_44
IO_13 pin 41 pin 57 IO_45
IO_14 pin 8 pin 24 IO_46
IO_15 pin 42 pin 58 IO_47
IO_16 pin 9 pin 25 IO_48
IO_17 pin 43 pin 59 IO_49
IO_18 pin 10 pin 26 IO_50
IO_19 pin 44 pin 60 IO_51
IO_20 pin 11 pin 27 IO_52
IO_21 pin 45 pin 61 IO_53
IO_22 pin 12 pin 28 IO_54
IO_23 pin 46 pin 62 IO_55
IO_24 pin 13 pin 29 IO_56
IO_25 pin 47 pin 63 IO_57
IO_26 pin 14 pin 30 IO_58
IO_27 pin 48 pin 64 IO_59
IO_28 pin 15 pin 31 IO_60
IO_29 pin 49 pin 65 IO_61
IO_30 pin 16 pin 32 IO_62
IO_31 pin 50 pin 66 IO_63

 Embedded Solutions Page 42

PMC Module Logic Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn1 Interface on
the PMC-Parallel-TTL. See the User Manual for your carrier board for more
information. Unused pins may be assigned by the specification and not needed by this
design.

-12V 1 2
GND INTA# 3 4

5 6
BUSMODE1# +5V 7 8

9 10
GND - 11 12
CLK GND 13 14
GND - 15 16

+5V 17 18
AD31 19 20

AD28- AD27 21 22
AD25- GND 23 24
GND - C/BE3# 25 26
AD22- AD21 27 28
AD19 +5V 29 30

AD17 31 32
FRAME#- GND 33 34
GND IRDY# 35 36
DEVSEL# +5V 37 38
GND LOCK# 39 40

41 42
PAR GND 43 44

AD15 45 46
AD12- AD11 47 48
AD9- +5V 49 50
GND - C/BE0# 51 52
AD6- AD5 53 54
AD4 GND 55 56

AD3 57 58
AD2- AD1 59 60

+5V 61 62
GND 63 64

Figure 39 PMC-PARALLEL-TTL Pn1 Interface

 Embedded Solutions Page 43

PMC Module Logic Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module PCI Pn2 Interface on
the PMC-Parallel-TTL. See the User Manual for your carrier board for more
information. Unused pins may be assigned by the specification and not needed by this
design.

+12V 1 2
3 4

GND 5 6
GND 7 8

9 10
11 12

RST# BUSMODE3# 13 14
 BUSMODE4# 15 16

GND 17 18
AD30 AD29 19 20
GND AD26 21 22
AD24 23 24
IDSEL AD23 25 26

AD20 27 28
AD18 29 30
AD16 C/BE2# 31 32
GND 33 34
TRDY# 35 36
GND STOP# 37 38
PERR# GND 39 40

SERR# 41 42
C/BE1# GND 43 44
AD14 AD13 45 46
GND AD10 47 48
AD8 49 50
AD7 51 52

53 54
GND 55 56

57 58
GND 59 60

61 62
GND 63 64

Figure 40 PMC-PARALLEL-TTL Pn2 Interface

 Embedded Solutions Page 44

PMC Module Front Panel IO Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module IO Interface on the
PMC-Parallel-TTL. Installed for –FP and –FRP models. Also see the User Manual for
your carrier board for more information. Standard BA17 is –RP [Pn4 only]

EXT_CLK_EN EXT_CLK 1 35
IO_31 IO_63 2 36
IO_30 IO_62 3 37
IO_29 IO_61 4 38
IO_28 IO_60 5 39
IO_27 IO_59 6 40
IO_26 IO_58 7 41
IO_25 IO_57 8 42
IO_24 IO_56 9 43
IO_23 IO_55 10 44
IO_22 IO_54 11 45
IO_21 IO_53 12 46
IO_20 IO_52 13 47
IO_19 IO_51 14 48
IO_18 IO_50 15 49
IO_17 IO_49 16 50
IO_16 IO_48 17 51
IO_15 IO_47 18 52
IO_14 IO_46 19 53
IO_13 IO_45 20 54
IO_12 IO_44 21 55
IO_11 IO_43 22 56
IO_10 IO_42 23 57
IO_9 IO_41 24 58
IO_8 IO_40 25 59
IO_7 IO_39 26 60
IO_6 IO_38 27 61
IO_5 IO_37 28 62
IO_4 IO_36 29 63
IO_3 IO_35 30 64
IO_2 IO_34 31 65
IO_1 IO_33 32 66
IO_0 IO_32 33 67
GND GND 34 68

Figure 41 PMC-PARALLEL-TTL FRONT PANEL Interface

 Embedded Solutions Page 45

PMC Module Backplane IO Interface Pin Assignment

The figure below gives the pin assignments for the PMC Module IO Interface on the
PMC-Parallel-TTL and routed to Pn4. Pn4 installed for –RP and –FRP models.
Installed for BA17. Also see the User Manual for your carrier board for more
information.

IO_0 IO_1 1 2
IO_2 IO_3 3 4
IO_4 IO_5 5 6
IO_6 IO_7 7 8
IO_8 IO_9 9 10
IO_10 IO_11 11 12
IO_12 IO_13 13 14
IO_14 IO_15 15 16
IO_16 IO_17 17 18
IO_18 IO_19 19 20
IO_20 IO_21 21 22
IO_22 IO_23 23 24
IO_24 IO_25 25 26
IO_26 IO_27 27 28
IO_28 IO_29 29 30
IO_30 IO_31 31 32
IO_32 IO_33 33 34
IO_34 IO_35 35 36
IO_36 IO_37 37 38
IO_38 IO_39 39 40
IO_40 IO_41 41 42
IO_42 IO_43 43 44
IO_44 IO_45 45 46
IO_46 IO_47 47 48
IO_48 IO_49 49 50
IO_50 IO_51 51 52
IO_52 IO_53 53 54
IO_54 IO_55 55 56
IO_56 IO_57 57 58
IO_58 IO_59 59 60
IO_60 IO_61 61 62
IO_62 IO_63 63 64

Figure 42 PMC-PARALLEL-TTL PN4 Interface

 Embedded Solutions Page 46

Applications Guide

Interfacing

The pin-out tables are displayed with the pins in the same relative order as the actual
connectors. Some general interfacing guidelines are presented below. Do not hesitate
to contact the factory if you need more assistance.

Watch the system grounds. All electrically connected equipment should have a fail-safe
common ground that is large enough to handle all current loads without affecting noise
immunity. Power supplies and power-consuming loads should all have their own ground
wires back to a common point.

Power all system power supplies from one switch. Open Drain interface devices provide
some immunity from, and allow operation when part of the circuit is powered on and
part is not. It is better to avoid the issue of going past the safe operating areas by
powering the equipment together and by having a good ground reference.

Keep cables short. Flat cables, even with alternate ground lines, are not suitable for
long distances. The PMC-Parallel-TTL has optional transorbs for input protection. In
addition series resistors are used and can be specified to be something other than the
22 ohm standard value. The connector is pinned out for a standard SCSI II/III cable to
be used. It is suggested that this standard cable be used for most of the cable run.

Terminal Block. We offer a high quality 68 screw terminal block that directly connects to
the SCSI II/III cable. The terminal block can mount on standard DIN rails. HDEterm68
[http://www.dyneng.com/HDEterm68.html]

We provide the components. You provide the system. Safety and reliability can be
achieved only by careful planning and practice. Inputs can be damaged by static
discharge, or by applying voltage outside of the particular device’s rated voltages.

 Embedded Solutions Page 47

Construction and Reliability

PMC Modules were conceived and engineered for rugged industrial environments. The
PMC-Parallel-TTL is constructed out of 0.062 inch thick high temperature ROHS
compliant material.

The traces are matched length from the FPGA ball to the IO pin. The options for front
panel and rear panel are isolated with series resistor packs to eliminate bus stubs when
one of the connectors is not in use.

Surface mounted components are used.

The PMC Module connectors are keyed and shrouded with Gold plated pins on both
plugs and receptacles. They are rated at 1 Amp per pin, 100 insertion cycles minimum.
These connectors make consistent, correct insertion easy and reliable.

The PMC is secured against the carrier with the connectors and front panel. If more
security against vibration is required the stand-offs can be secured against the carrier.

The PMC Module provides a low temperature coefficient of 2.17 W/oC for uniform heat.
This is based upon the temperature coefficient of the base FR4 material of 0.31 W/m-
oC, and taking into account the thickness and area of the PMC. The coefficient means
that if 2.17 Watts are applied uniformly on the component side, then the temperature
difference between the component side and solder side is one degree Celsius.

Thermal Considerations

The PMC-PARALLEL-TTL design consists of CMOS circuits. The power dissipation due
to internal circuitry is very low. It is possible to create higher power dissipation with the
externally connected logic. If more than one Watt is required to be dissipated due to
external loading; forced air cooling is recommended. With the one degree differential
temperature to the solder side of the board external cooling is easily accomplished.

 Embedded Solutions Page 48

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered and
options. http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected unit is
at fault. Then call the Customer Service Department for a RETURN MATERIAL
AUTHORIZATION (RMA) number. Carefully package the unit, in the original shipping
carton if this is available, and ship prepaid and insured with the RMA number clearly
written on the outside of the package. Include a return address and the telephone
number of a technical contact. For out-of-warranty repairs, a purchase order for repair
charges must accompany the return. Dynamic Engineering will not be responsible for
damages due to improper packaging of returned items. For service on Dynamic
Engineering Products not purchased directly from Dynamic Engineering contact your
reseller. Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The current minimum
repair charge is $125. Customer approval will be obtained before repairing any item if
the repair charges will exceed one half of the quantity one list price for that unit. Return
transportation and insurance will be billed as part of the repair and is in addition to the
minimum charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
support@dyneng.com

 Embedded Solutions Page 49

Specifications
Logic Interface: PMC Logic Interface [PCI] 32/33

Digital Parallel IO: 64 discrete IO channels. Each has a separate
enable to control output. Inputs are maskable and
always available. Upper 32 bits can be used with
FIFO and auto-loader to capture transition
information and timestamp.

CLK rates supported: Osc, PLL, Osc and PLL programmed COS rate .

Software Interface: Control Registers, IO registers, IO Read-Back
registers

Initialization: Programming procedure documented in this
manual

Access Modes: LW to registers, read-write to most registers

Access Time: Frame to TRDY 121 nS [4 PCI clocks] or burst
mode DMA – 1 word per PCI clock transferred.

Interrupt: All IO lines can be used as interrupt sources with
programmable rising and or falling activity on IO
line “COS”, DMA interrupts.

Onboard Options: All Options are Software Programmable

Interface Options: User IO routed to Pn4. 68 Pin SCSI III connector at
front bezel not installed BA17. Ask for this option.

Dimensions: Standard Single PMC Module.

Construction: Multi-Layer Printed Circuit, Through Hole and
Surface Mount Components.

Temperature Coefficient: 2.17 W/oC for uniform heat across PMC

Power: TBD mA @ 5V outputs off
Add 10 mA per active low output for pull-up current
drivers support -32/+64 mA per IO line, higher
currents are possible depending on load.

 Embedded Solutions Page 50

Order Information
standard temperature range 0-70øC
PMC-Parallel-TTL-BA17 PMC Module with 64 IO channels, COS and direct IO, rear
IO, 3.3V reference voltage to pull-ups, DMA support, 12Kx32 FIFO RX, Auto capture
and DMA of COS data on upper 32 IO. Programmable triggers.
http://www.dyneng.com/pmc_parallel_TTL.html

Order Options:
Pick One
–FP for front panel IO only [default if no selection made]
-RP for rear panel IO PN4 only
-FRP for both IO connections
Shown for reference. BA17 selection determines [-RP]

Pick any combination to go with IO
-TRANS to add transorbs
-CC to add conformal coating
-ET to add Industrial Temp [-40 +85]
-TS to add thumbscrew option – standard is latch block
-3V to change from 5V IO reference to 3.3V IO reference
Shown for reference. BA17 selection determines [-3V]

Related:
PCI2PMC: PCI to PMC adapter to allow installation of PMC-Parallel-TTL into a PCI
system.
http://www.dyneng.com/pci2pmc.html

PCIeBPMCX1: PCIe to PMC adapter to allow installation of PMC-Parallel-TTL into a
PCIe system.
http://www.dyneng.com/pciebpmcx1.html

HDEterm68: 68 position terminal block with two SCSI II/III connectors. PMC-Parallel-
TTL compatible.
http://www.dyneng.com/HDEterm68.html

HDEcabl68: SCSI II/III cable compatible with FPIO on PMC Parallel IO.
http://www.dyneng.com/HDEcabl68.html

PIM_Parallel_IO : PMC IO Module for PMC Parallel TTL design. Provides FPIO in
cPCI systems when used with a PIM Carrier
http://www.dyneng.com/pim_parallel_io.shtml

 Embedded Solutions Page 51

PMC Parallel IO Eng Kit : HDEterm68-MP, HDEcabl68, Windows Driver software,
reference schematics. Recommended for first time purchases.
http://www.dyneng.com/pmc_parallel_TTL.html

All information provided is Copyright Dynamic Engineering

