
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

PMC Parallel TTL BA16
Base

&

Channel
Software Manual

Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Manual Revision A
Corresponding Hardware: Revision A

10-2007-0101
BA16: Revision B

 Embedded Solutions Page 2 of 21

BA16Base & BA16Chan
WDM Device Drivers for the
PMC Parallel TTL BA16
Parallel TTL Interface w/ COS

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

FAX: (831) 457-4793

This document contains information of proprietary
interest to Dynamic Engineering. It has been supplied in
confidence and the recipient, by accepting this material,
agrees that the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure
that this manual is accurate and complete. Still, the
company reserves the right to make improvements or
changes in the product described in this document at
any time and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates,
uses, and can radiate radio frequency energy.
Operation of this equipment in a residential area is likely
to cause radio interference, in which case the user, at
his own expense, will be required to take whatever
measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for
use as critical components in life support devices o
systems without the express written approval of the
president of Dynamic Engineering.

Connection of incompatible hardware is likely to cause
serious damage.

©2016 by Dynamic Engineering.

Other trademarks and registered trademarks are owned by their
respective manufacturers.
Manual Revision A: Revised February 8, 2016

 Embedded Solutions Page 3 of 21

Table of Contents

Introduction ... 4
Driver Installation .. 6
Windows 7 Installation ... 6
Driver Startup .. 7
IO Controls ... 7

IOCTL_BA16_BASE_GET_INFO ... 8
IOCTL_BA16_BASE_LOAD_PLL... 8
IOCTL_BA16_BASE_READ_PLL .. 8
IOCTL_BA16_BASE_SET_DIR ... 9
IOCTL_BA16_BASE_GET_DIR ... 9
IOCTL_BA16_BASE_SET_DAT .. 9
IOCTL_BA16_BASE_GET_DAT .. 9
IOCTL_BA16_BASE_GET_DATREG ... 10
IOCTL_BA16_BASE_SET_PAREN ... 10
IOCTL_BA16_BASE_CLR_PAREN ... 10
IOCTL_BA16_BASE_SET_COSCLK ... 11
IOCTL_BA16_BASE_GET_COSCLK ... 12
IOCTL_BA16_BASE_SET_RISEFALLREG .. 12
IOCTL_BA16_BASE_GET_RISEFALLREG ... 12
IOCTL_BA16_BASE_SET_INTREG .. 13
IOCTL_BA16_BASE_GET_INTREG .. 13
IOCTL_BA16_BASE_CLR_INTSTAT ... 13
IOCTL_BA16_BASE_GET_INTSTAT ... 14
IOCTL_BA16_BASE_SET_DR .. 14
IOCTL_BA16_BASE_GET_DR .. 15
IOCTL_BA16_BASE_GET_STATUS ... 15
IOCTL_BA16_BASE_SET_MASTEREN .. 15
IOCTL_BA16_BASE_CLR_MASTEREN .. 15
IOCTL_BA16_CHAN_GET_INFO .. 15
IOCTL_BA16_CHAN_GET_STATUS ... 16
IOCTL_BA16_CHAN_SET_FIFO_LEVELS .. 16
IOCTL_BA16_CHAN_GET_FIFO_LEVELS .. 16
IOCTL_BA16_CHAN_GET_FIFO_COUNTS .. 16
IOCTL_BA16_CHAN_RESET_FIFOS .. 17
IOCTL_BA16_CHAN_REGISTER_EVENT... 17
IOCTL_BA16_CHAN_ENABLE_INTERRUPT .. 17
IOCTL_BA16_CHAN_DISABLE_INTERRUPT ... 17
IOCTL_BA16_CHAN_FORCE_INTERRUPT .. 17
IOCTL_BA16_CHAN_GET_ISR_STATUS ... 18
IOCTL_BA16_CHAN_SWW_TX_FIFO... 18
IOCTL_BA16_CHAN_SWR_RX_FIFO ... 18
IOCTL_BA16_CHAN_SET_CONT ... 19
IOCTL_BA16_CHAN_GET_CONT ... 19
IOCTL_BA16_CHAN_GET_RX_DAT_CNT .. 19

Write ... 20
Read... 20

Warranty ... 21
Service Policy ... 21

Development Support .. 21
For Service Contact: .. 21

 Embedded Solutions Page 4 of 21

Introduction
The BA16Base and BA16Chan drivers were developed with the Windows Driver Foundation
version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode Driver Framework (KMDF).

The BA16 driver package has three parts. The driver is installed into the Windows® OS, the
test executable and the User Application “Userap” exectutable.

The driver and test are delivered as installed or executable items to be used directly or
indirectly by the user. The Userapp code is delivered in source form [C] and is for the purpose
of providing a reference to using the driver.

The “test” executable allows the user to use the driver in script form from a DOS window.
Each driver call can be accessed, parameters set and returned. Normally not need or used by
the integrator, but a very handy tool in certain circumstances. The test executable has a “help”
menu to explain the calls, parameters and returned information.

UserAp is a stand-alone code set with a simple and powerful menu plus a series of “tests” that
can be run on the installed hardware. Each of the tests execute calls to the driver, pass
parameters and structures, and get results back. With the sequence of calls demonstrated,
the functions of the hardware are utilized for loop-back testing. The software is used for
manufacturing test at Dynamic Engineering. For example most Dynamic Engineering PCI
based designs support DMA. DMA is demonstrated with the memory based loop-back tests.
The tests can be ported and modified to fit your requirements.

The test software can be ported to your application to provide a running start. It is
recommended to port the switch and status tests to your application to get started. The tests
are simple and will quickly demonstrate the end-to-end operation of your application making
calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure occurs
and stop or to continue, to program a set number of loops to execute and more. The user can
add tests to the provided test suite to try out application ideas before committing to your
system configuration. In many cases the test configuration will allow faster debugging in a
more controlled environment before integrating with the rest of the system.

The hardware has features common to the board level and features that are set apart in
“channels”. The channels have the same offsets within the channel, and the same status and
control bit locations allowing for symmetrical software in the calling routines. The driver
supports the channels with a variable passed in to identify which channel is being accessed.
The hardware manual defines the pinouts for each channel and the bitmaps and detailed
configurations for each channel. The driver handles all aspects of interacting with the
channels and base features.

 Embedded Solutions Page 5 of 21

We strive to make a useable product, and while we can guarantee operation we can’t foresee
all concepts for client implementation. If you have suggestions for extended features, special
calls for particular set-ups or whatever please share them with us, [engineering@dyneng.com]
and we will consider and in many cases add them.

The PMC Parallel TTL board has a Spartan3-1000 Xilinx FPGA to implement the PCI
interface, FIFOs and protocol control and status for 64 IO. Each IO can be programmed to be
an output or an input at any time. Each IO can have rising edge, falling edge or COS
processing enabled. In addition the BA16 version has two transmit and two receive channels
with byte wide DMA based IO. The driver supports programming a programmable PLL.
Channel A of the PLL is used to control the transmit frequency on the channel based IO.
Each channel has data FIFO’s [2K Tx and 4K Rx].

When the PMC Parallel TTL BA16 board is recognized by the PCI bus configuration utility it
will start the PmcParTtlBa16Base driver which will create a device object for each board,
initialize the hardware, create child devices for the two I/O channels and request loading of the
PmcParTtlBa16Chan driver. The PmcParTtlBa16Chan driver will create a device object for
each of the I/O channels and perform initialization on each channel. IO Control calls (IOCTLs)
are used to configure the board and read status. Read and Write calls are used to move
blocks of data in and out of the device.

Note
This documentation will provide information about all calls made to the drivers, and how the
drivers interact with the device for each of these calls. For more detailed information on the
hardware implementation, refer to the PMC Parallel TTL BA16 user manual (also referred to as
the hardware manual).

 Embedded Solutions Page 6 of 21

Driver Installation
There are several files provided in each driver package. These files include
Ba16BasePublic.h, Ba16Base.inf, ba16base.cat, Ba16Base.sys, Ba16ChanPublic.h,
Ba16Chan.inf, ba16chan.cat, Ba16Chan.sys, and WdfCoInstaller01009.dll.

Ba16BasePublic.h and Ba16ChanPublic.h are the C header files that defines the Application
Program Interface (API) for the driver. These file is required at compile time by any application
that wishes to interface with the drivers, but is not needed for driver installation.

PmcTtlBa16UserApp.exe is a sample console applications that makes calls into the
Ba16Base/Ba16Chan drivers to test each driver call without actually writing any application
code. They are not required during driver installation either.

This test application is intended to test the proper functioning of each driver call, not for normal
operation. Many integration efforts will never need the debugger capability that the test menu
represents. The test capability will allow the designer to access the card without any other
software in the way to make sure that the system can “see” the card and to do basic card
manipulations.

Windows 7 Installation
Copy Ba16Base.inf, ba16base.cat, Ba16Base.sys, Ba16Chan.inf, ba16chan.cat,
Ba16Chan.sys, and WdfCoInstaller01009.dll (Win7 version) to a CD or USB memory device as
preferred.

With the hardware installed, power-on the PCI host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver Software.
• Insert the disk or memory device prepared above in the desired drive.
• Select Browse my computer for driver software.
• Select Let me pick from a list of device drivers on my computer.
• Select Next.
• Select Have Disk and enter the path to the device prepared above.
• Select Next.
• Select Close to close the update window.
The system should now see the channels. Repeat this for each of the two channels as
necessary.

* If the Other PCI Bridge Device is not displayed, click on the Scan for hardware changes
icon on the tool-bar.

 Embedded Solutions Page 7 of 21

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes the
hardware.

A handle can be opened to a specific board by using the CreateFile() function call and passing
in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID), which are
defined in Ba16BasePublic.h and Ba16ChanPublic.h See main.c in the PmcTtlBa16UserApp
project for an example of how to acquire a handle to the device.

The main file provided is designed to work with our test menu and includes user interaction
steps to allow the user to select which board is being tested in a multiple board environment.
The integrator can hardcode for single board systems or use an automatic loop to operate in
multiple board systems without using user interaction. For multiple user systems it is
suggested that the board number is associated with a switch setting so the calls can be
associated with a particular board from a physical point of view.

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a single
Device Object, which controls a single board or I/O channel. IOCTLs are called using the
Win32 function DeviceIoControl(), and passing in the handle to the device opened with
CreateFile() (see above). IOCTLs generally have input parameters, output parameters, or
both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 8 of 21

The IOCTLs defined for the Ba16Base driver are described below:

IOCTL_BA16_BASE_GET_INFO
Function: Returns the device driver version, design ID, design rev, PLL device ID, user switch
value, and device instance number.
Input: None
Output: BA16_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has been
selected by the user (see the board silk screen for bit position and polarity). Instance number
is the zero-based device number. See the definition of BA16_BASE_DRIVER_DEVICE_INFO
below. Bit definitions can be found under ‘pmcparttl_ID’ section under Register Definitions in
the Hardware manual.

// Driver/Device information
typedef struct _BA16_BASE_DRIVER_DEVICE_INFO {
 UCHAR DriverVersion;
 UCHAR DesignID;
 UCHAR DesignRev;
 UCHAR PllDeviceId;
 UCHAR SwitchValue;
 ULONG InstanceNumber;
} BA16_BASE_DRIVER_DEVICE_INFO, *PBA16_BASE_DRIVER_DEVICE_INFO;

IOCTL_BA16_BASE_LOAD_PLL
Function: Loads the internal registers of the PLL.
Input: BA16_BASE_PLL_DATA structure
Output: None
Notes: After the PLL has been configured, the register array data is analysed to determine the
programmed frequencies, and the IO clock A-D initial divisor fields in the base control register
are automatically updated.

IOCTL_BA16_BASE_READ_PLL
Function: Returns the contents of the PLL’s internal registers
Input: None
Output: BA16_BASE_PLL_DATA structure
Notes: The register data is output in the BA16_BASE_PLL_DATA structure In an array of 40
bytes

 Embedded Solutions Page 9 of 21

IOCTL_BA16_BASE_SET_DIR
Function: Write to Direction Register Lower (31-0) or Upper IO (63-32).
Input: BA16_BASE_ DIRECTION structure
Output: None
Notes: 0 = RX, and 1 = TX for each bit. See the definition of BA16_BASE_ DIRECTION
below. Detailed defintions can be found under ‘pmcparttl_DirL’ and ‘pmcparttl_DirU’ section
under Register Definitions in the Hardware manual.

typedef struct _BA16_BASE_DIRECTION {
 ULONG LowerDir;
 ULONG UpperDir;
} BA16_BASE_DIRECTION, *PBA16_BASE_DIRECTION;

IOCTL_BA16_BASE_GET_DIR
Function: Read from Direction Register Lower (31-0) or Upper IO (63-32).
Input: None
Output: BA16_BASE_ DIRECTION structure
Notes: See the definition of BA16_BASE_DIRECTION above.

IOCTL_BA16_BASE_SET_DAT
Function: Write to Data Register Lower (31-0) or Upper IO (63-32).
Input: BA16_BASE_ DATA structure
Output: None
Notes: Bits written to register will go to IO if Parallel Enable bit is set and IO type is set to
registered. See the definition of BA16_BASE_ DATA below. Detailed defintions can be found
under ‘pmcparttl_DatL’ and ‘pmcparttl_DatU’ section under Register Definitions in the
Hardware manual.

typedef struct _BA16_BASE_DATA {
 ULONG LowerData;
 ULONG UpperData;
} BA16_BASE_DATA, *PBA16_BASE_DATA;

IOCTL_BA16_BASE_GET_DAT
Function: Read from Data IO Lower (31-0) or Upper IO (63-32).
Input: None
Output: BA16_BASE_ DATA structure
Notes: IO lines are read-back not register value – may or may not match register. See the
definition of BA16_BASE_ DATA above.

 Embedded Solutions Page 10 of 21

IOCTL_BA16_BASE_GET_DATREG
Function: Read from Data Register Lower (31-0) or Upper IO (63-32).
Input: None
Output: BA16_BASE_ DATAREG structure
Notes: SET_DAT Register data read-back. See the definition of BA16_BASE_ DATAREG
below. Detailed defintions can be found under ‘pmcparttl_DatLreg’ and ‘pmcparttl_DatUreg’
section under Register Definitions in the Hardware manual.

typedef struct _BA16_BASE_DATAREG {

 ULONG LowerDataReg;

 ULONG UpperDataReg;

} BA16_BASE_DATAREG, *PBA16_BASE_DATAREG;

IOCTL_BA16_BASE_SET_PAREN
Function: Sets the parallel enable bit.
Input: None
Output: None
Notes: The Parallel Enable bit is used to enable the register IO to be clocked through to the
external IO. If set the upper and lower IO will be updated when written. If cleared, the data
registers updated and then set the IO will update coherently.

IOCTL_BA16_BASE_CLR_PAREN
Function: Clears the parallel enable bit.
Input: None
Output: None
Notes: Clearing the Parallel Enable will prevent changes to the data registers from changing
the IO. Use to hold off updates for upper and lower IO to be synchronized.

 Embedded Solutions Page 11 of 21

IOCTL_BA16_BASE_SET_COSCLK
Function: Write to COS clock register.
Input: BA16_BASE_COS_CLOCK
Output: None
Notes: Please note that the COS clock can be driven to an IO pin to verify frequency with a
scope. Detailed bit defines can be found in the ‘pmcparttl_COSclk’ section of the Register
Definitions in the Hardware manual. The following is a quick summary to allow the basic
function to be used without further research. Also see definition of BA16_BASE_COS_CLOCK
below.

COS Clock definitions
11-0 = divisor, {reference / 2*(n+1)}, n>=1
PRE_PCI 0x0000 // select PCI clock for reference clock
PRE_OSC 0x2000 // select oscillator for reference clock
PRE_EXT 0x4000 // select external clock for reference clock
PRE_SPARE 0x6000 // spare set to pci clock
POST_SELECT_DIV 0x1000 // select divided clock
POST_SELECT_REF 0x0000 // select reference clock
COS_REF_D0_OUT 0x8000 // enable COS clock onto data 0, requires output direction
set too

The clock for Change of State can be driven directly from the source or divided down from the
source [POST_SELECT_] controls this option. To select the source choose PCI, Osc [50
MHz], External or Spare [set to the PCI clock currently].

If the divided version is desired use the Formula shown to program “n” to get the frequency
you need. For example with a 50 MHz [Osc] reference and N set to 24 the COS hardware will
use a 1 MHz clock [50 MHz / 2 * (24+1)].

Allow sufficient time for the clock to stabilize prior to enabling COS operation.

typedef struct _BA16_BASE_COS_CLOCK {
 ULONG Divisor;
 ULONG PostSelect;
 COS_PRESELECT PreSelect;
 ULONG DatOut0En;
} BA16_BASE_COS_CLOCK, *PBA16_BASE_COS_CLOCK;

 Embedded Solutions Page 12 of 21

IOCTL_BA16_BASE_GET_COSCLK
Function: Read from COS clock register.
Input: None
Output: BA16_BASE_COS_CLOCK
Notes: Reading provides the current values in the COS Clock definition register with no side
effects – can read at any time without affecting the clock.

IOCTL_BA16_BASE_SET_RISEFALLREG
Function: Write to COS Rising or Falling Register bit enables Lower (31-0) or Upper IO
(63-32).
Input: BA16_BASE_ RF_REG structure
Output: None
Notes: Select which bits are tested for rising and falling edge activity. See the definition of
BA16_BASE_ RF_ REG below. Detailed defintions can be found under ‘pmcparttl_RisLreg’,
‘pmcparttl_RisUreg’, ‘pmcparttl_FallLreg’, and ‘pmcparttl_FallUreg’ section under Register
Definitions in the Hardware manual.

typedef struct _BA16_BASE_RF_REG {
 ULONG LowerRisReg;
 ULONG UpperRisReg;
 ULONG LowerFallReg;
 ULONG UpperFallReg;
} BA16_BASE_RF_REG, *PBA16_BASE_RF_REG;

IOCTL_BA16_BASE_GET_RISEFALLREG
Function: Read from COS Rising or Falling Register bit enables Lower (31-0) or Upper IO
(63-32).
Input: None
Output: BA16_BASE_ RF_REG structure
Notes: No side effects from reading.

 Embedded Solutions Page 13 of 21

IOCTL_BA16_BASE_SET_INTREG
Function: Write to COS Interrupt Rising or Falling Register interrupt enables Lower (31-0) or
Upper IO (63-32).
Input: BA16_BASE_ INT_REG structure
Output: None
Notes: Enable the interrupt corresponding to the rising COS status for each bit. Not setting
the interrupt will allow polled operation using the status. See the definition of BA16_BASE_
INT_REG below. Detailed defintions can be found under ‘pmcparttl_IntRisLreg’,
‘pmcparttl_IntRisUreg’, ‘pmcparttl_IntFallLreg’, and ‘pmcparttl_IntFallUreg’ section under
Register Definitions in the Hardware manual.

typedef struct _BA16_BASE_INT_REG {
 ULONG LowerIntRisReg;
 ULONG UpperIntRisReg;
 ULONG LowerIntFallReg;
 ULONG UpperIntFallReg;
} BA16_BASE_INT_REG, *PBA16_BASE_INT_REG;

IOCTL_BA16_BASE_GET_INTREG
Function: Read from COS Rising or Falling Register bit enables Lower (31-0) or Upper IO
(63-32).
Input: None
Output: BA16_BASE_ RF_REG structure
Notes: No side effects from reading.

IOCTL_BA16_BASE_CLR_INTSTAT
Function: Clears the interrupts for Rising or Falling Lower (31-0) or Upper (63-32) Register
Interrupt Status.
Input: BA16_BASE_CLEAR_STAT
Output: None
Notes: Writes to the registers which clears the interrupts on a bit by bit basis. See the
definition of BA16_BASE_ CLEAR_STAT below. Detailed defintions can be found under
‘pmcparttl_IntRisLrstat’, ‘pmcparttl_IntRisUstat’, ‘pmcparttl_IntFallLstat’, and
‘pmcparttl_IntFallUstat’ section under Register Definitions in the Hardware manual.

typedef struct _BA16_BASE_CLEAR_STAT {
 ULONG LowerRisStat;
 ULONG UpperRisStat;
 ULONG LowerFallStat;
 ULONG UpperFallStat;
} BA16_BASE_CLEAR_STAT, *PBA16_BASE_CLEAR_STAT;

 Embedded Solutions Page 14 of 21

IOCTL_BA16_BASE_GET_INTSTAT
Function: Read from COS Interrupt Falling or Rising Lower (31-0) or Upper (63-32) Register
Interrupt Status
Input: None
Output: BA16_BASE_INT_STAT
Notes: Read the status register to see which bits have been set indicating that a falling event
has occurred for a programmed bit. It is recommended that the Interrupt status is cleared each
time the enabled bits are changed. Writing back the data read will clear only the bits that the
SW has registered as interrupts and will prevent missing interrupt events. See the definition of
BA16_BASE_ INT_STAT below. Detailed defintions can be found under
‘pmcparttl_IntRisLrstat’, ‘pmcparttl_IntRisUstat’, ‘pmcparttl_IntFallLstat’, and
‘pmcparttl_IntFallUstat’ section under Register Definitions in the Hardware manual.

typedef struct _BA16_BASE_INT_STAT {
 ULONG LowerRisStat;
 ULONG UpperRisStat;
 ULONG LowerFallStat;
 ULONG UpperFallStat;
} BA16_BASE_INT_STAT, *PBA16_BASE_INT_STAT;

IOCTL_BA16_BASE_SET_DR
Function: Write to DR Lower or Upper Register bit wise selection of DMA/State-machine
control or register control of IO.
Input: BA16_BASE_ DRREG structure
Output: None
Notes: Select Register base or DMA / State-machine based IO. When ‘0’ the register IO is
selected. When ‘1’ the BA16 function IO is selected. The BA16 function has inputs on the
lower channels and outputs on the upper. The input function needs to be programmed as an
input in the DIR registers. See the definition of BA16_BASE_ DRREG below. Detailed
defintions can be found under ‘pmcparttl_DR_L’ and ‘pmcparttl_DR_U’ section under Register
Definitions in the Hardware manual.

typedef struct _BA16_BASE_DRREG {
 ULONG LowerDrSel;
 ULONG UpperDrSel;
} BA16_BASE_DRREG, *PBA16_BASE_DRREG;

 Embedded Solutions Page 15 of 21

IOCTL_BA16_BASE_GET_DR
Function: Read from DR Lower or Upper Register.
Input: None
Output: BA16_BASE_ RF_REG structure
Notes: No side effects from reading.

IOCTL_BA16_BASE_GET_STATUS
Function: Returns Status Register
Input: None
Output: ULONG
Notes: For general purpose – bit mapped access from the register.

IOCTL_BA16_BASE_SET_MASTEREN
Function: Sets master interrupt enable bit.
Input: None
Output: None
Notes: The Master Interrupt enable is needed to allow interrupts from some sources to be
asserted. Please refer to the HW manual for details.

IOCTL_BA16_BASE_CLR_MASTEREN
Function: Clears master interrupt enable bit.
Input: None
Output: None
Notes: The Clear function can be used to disable some board level interrupt sources.

The IOCTLs defined for the Ba16Chan driver are described below:

IOCTL_BA16_CHAN_GET_INFO
Function: Returns the Instance Number and the Current Driver Version.
Input: None
Output: BA16_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of BA16_CHAN_DRIVER_DEVICE_INFO below.

typedef struct _BA16_CHAN_DRIVER_DEVICE_INFO {
 UCHAR DriverVersion;
 ULONG InstanceNumber;
} BA16_CHAN_DRIVER_DEVICE_INFO, *PBA16_CHAN_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 16 of 21

IOCTL_BA16_CHAN_GET_STATUS
Function: Returns the value of the status register and clear latched bits.
Input: None
Output: Status register value (ULONG)
Notes: Latched interrupt status bits are cleared by read – [call writes back and clears bits].
Detailed defintions can be found under ‘pmcparttl_ch0,1_st’ section under Register Definitions
in the Hardware manual.

IOCTL_BA16_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: BA16_CHAN_FIFO_LEVELS structure
Output: None
Notes: The FIFO counts are compared to these levels to determine the value of the
STAT_TX_FF_AMT and STAT_RX_FF_AFL status bits. See the definition of
BA16_CHAN_FIFO_ LEVELS below. Detailed defintions can be found under
‘pmcparttl_ch0,1_tx_aecnt and ‘pmcparttl_ch0,1_rx_afcnt’ section under Register Definitions in
the Hardware manual.

typedef struct _BA16_CHAN_FIFO_LEVELS
{
 USHORT AlmostFull;
 USHORT AlmostEmpty;
} BA16_CHAN_FIFO_LEVELS, *PBA16_CHAN_FIFO_LEVELS;

IOCTL_BA16_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the
channel.
 Input: None
Output: BA16_CHAN_FIFO_LEVELS structure
Notes: The FIFO counts are compared to these levels to determine the value of the
STAT_TX_FF_AMT and STAT_RX_FF_AFL status bits.

IOCTL_BA16_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in transmit and receive FIFOs.
Input: None
Output: BA16_CHAN_FIFO_COUNTS structure
Notes: Returns the actual FIFO data counts. The Status register has a second Data count for
the RX FIFO that includes the Pipeline between the FIFO and PCI bus. TX FIFO is 2K-1 deep,
RX is 4K-1 deep.

 Embedded Solutions Page 17 of 21

IOCTL_BA16_CHAN_RESET_FIFOS
Function: Resets both FIFOs for the referenced channel.
Input: None
Output: None
Notes: Resets transmit and receive FIFO’s.

IOCTL_BA16_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned from
that call as the input to this IOCTL. The driver then obtains a system pointer to the event and
signals the event when a user interrupt is serviced. The user interrupt service routine waits on
this event, allowing it to respond to the interrupt. The DMA interrupts do not cause the event to
be signaled.

IOCTL_BA16_CHAN_ENABLE_INTERRUPT
Function: Enables the channel Master Interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts. The
master interrupt enable is disabled in the driver interrupt service routine when a user interrupt
is serviced. Therefore this command must be run after each interrupt occurs to re-enable it.

IOCTL_BA16_CHAN_DISABLE_INTERRUPT
Function: Disables the channel Master Interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_BA16_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel master
interrupt is enabled. This IOCTL is used for development, to test interrupt processing. Board
level master interrupt also needs to be set.

 Embedded Solutions Page 18 of 21

IOCTL_BA16_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (ULONG)
Notes: Returns the interrupt status that was read in the interrupt service routine of the last
interrupt caused by one of the enabled channel interrupts. The interrupts that deal with the
DMA transfers do not affect this value. Masked version of channel status.

IOCTL_BA16_CHAN_SWW_TX_FIFO
Function: Writes a 32-bit data word to the transmit FIFO.
Input: FIFO word (ULONG)
Output: none
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

IOCTL_BA16_CHAN_SWR_RX_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (ULONG)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

 Embedded Solutions Page 19 of 21

IOCTL_BA16_CHAN_SET_CONT
Function: write to Channel Control register using structure
Input: BA16_CHAN_CONT
Output: None
Notes: See the definition of BA16_CHAN_CONT below. Detailed defintions can be found
under ‘pmcparttl_ch0,1_base’ section under Register Definitions in the Hardware manual.

typedef struct _BA16_CHAN_CONT {
 BOOLEAN FifoTestEn;// BiPass Mode Control
 BOOLEAN EnableTx; // start transmit state machine or stop
 BA16_CHAN_MODE_SEL TXMODE; // BA16_8, BA16_16, BA16_32, BA16_64 bit operation
- only 8 is legal on BA16
 BOOLEAN TxEndian; // Set for reversed byte pattern on transmit
 BOOLEAN TxMtMode; // T for pause mode, F to stop on empty FIFO
 BOOLEAN TxClkSel; // T for PLLA for reference, F for oscillator [50
mhz] set to False in BiPass mode
 BOOLEAN EnableRx; // start or stop RX state machine
 BOOLEAN RxEndian; // Set for reversed byte pattern on receive
 BOOLEAN RxClkSel; // T for PLLB for reference clock, F for osc [50
mhz]. Use 6x+ expected RX frequency
 BOOLEAN WrDmaEn; // Write DMA Interrupt Enable
 BOOLEAN RdDmaEn; // Read DMA Interrupt Enable
 BOOLEAN RxIdle; // Rx State Machine is Idle - read only
 BOOLEAN TxIdle; // Tx State Machine is Idle - read only
 BOOLEAN ReadDmaIdle; // Read DMA SM is idle - read only
 BOOLEAN WriteDmaIdle;// Write DMA SM is idle - read only
} BA16_CHAN_CONT, *PBA16_CHAN_CONT;

IOCTL_BA16_CHAN_GET_CONT
Function: Read from Channel Control register using structure
Input: None
Output: BA16_CHAN_CONT structure
Notes:

IOCTL_BA16_CHAN_GET_RX_DAT_CNT
Function: Read from Channel Status register to get DataCount bit
Input: None
Output: RX data count (ULONG)
Notes:

 Embedded Solutions Page 20 of 21

Write
PMCTTLBA16 RAM data is written to the device using the write command. Writes are
executed using the function WriteFile() and passing in the handle to the device opened with
CreateFile(), a pointer to a pre-allocated buffer containing the data to be written, an unsigned
long integer that represents the size of that buffer in bytes, a pointer to an unsigned long
integer to contain the number of bytes actually written, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

Read
PMCTTLBA16 RAM data is read from the device using the read command. Reads are
executed using the function ReadFile() and passing in the handle to the device opened with
CreateFile(), a pointer to a pre-allocated buffer that will contain the data read, an unsigned
long integer that represents the size of that buffer in bytes, a pointer to an unsigned long
integer to contain the number of bytes actually read, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

For PMCTTLBA16 write and read are implemented with Kernel level write and read for
high performance.

Please see ‘fifo.c’ in the PmcTtlBa16UserApp for examples.

 Embedded Solutions Page 21 of 21

Warranty
http://www.dyneng.com/warranty.html Please refer to the published warranty information.

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault. The
driver has gone through extensive testing and in most cases it will be “cockpit error” rather
than an error with the driver. When you are sure or at least willing to pay to have someone
help then call the Customer Service Department and arrange to speak with an engineer. We
will work with you to determine the cause of the issue. If the issue is one of a defective driver
we will correct the problem and provide an updated module(s) to you [no cost]. If the issue is
of the customer’s making [anything that is not the driver] the engineering time will be invoiced
to the customer. Pre-approval may be required in some cases depending on the customer’s
invoicing policy.

Development Support
Purchasers of Dynamic Engineering HW are provided with a small amount of integration
support. Dynamic Engineering offers support packages to provide a block of time for software
support. We can write additional calls, help debug client code, write additional user level
situations to support your T&I.
Please see http://www.dyneng.com/TechnicalSupportFromDE.pdf for more details.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793
support@dyneng.com
All information provided is Copyright Dynamic Engineering.

