
DYNAMIC ENGINEERING
435 Park Dr., Ben Lomond, Calif. 95005
831-336-8891 Fax 831-336-3840

 http://www.dyneng.com
sales@dyneng.com

 Est. 1988

pb3_mds1
&

mds1_chan

Driver Documentation

Linux 2.6.16

Revision A
Corresponding Hardware: Revision C

10-2005-0203
Corresponding Firmware: Revision A

 Embedded Hardware and Software Solutions Page 2 of 12

pb3_mds1 and mds1_chan
Linux Device Drivers for the
PMC-BiSerial-III Mds1
Four-channel Manchester encoded
PMC based Serial Interface

Dynamic Engineering
435 Park Drive
Ben Lomond, CA 95005
831-336-8891
831-336-3840 FAX

This document contains information of
proprietary interest to Dynamic Engineering.
It has been supplied in confidence and the
recipient, by accepting this material, agrees
that the subject matter will not be copied or
reproduced, in whole or in part, nor its
contents revealed in any manner or to any
person except to meet the purpose for which
it was delivered.

Dynamic Engineering has made every effort
to ensure that this manual is accurate and
complete. Still, the company reserves the
right to make improvements or changes in
the product described in this document at
any time and without notice. Furthermore,
Dynamic Engineering assumes no liability
arising out of the application or use of the
device described herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this
equipment in a residential area is likely to
cause radio interference, in which case the
user, at his own expense, will be required to
take whatever measures may be required to
correct the interference.

Dynamic Engineering’s products are not
authorized for use as critical components in
life support devices or systems without the
express written approval of the president of
Dynamic Engineering.

Connection of incompatible hardware is likely
to cause serious damage.

©2007 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revision A. Revised February 22, 2007

 Embedded Hardware and Software Solutions Page 3 of 12

Table of Contents

Introduction ..4
Note..4
Driver Installation ...4
Driver Startup ..5
IO Controls...6

IOCTL_PB3_MDS1_GET_INFO..6
IOCTL_PB3_MDS1_LOAD_PLL_DATA...6
IOCTL_PB3_MDS1_READ_PLL_DATA...6
IOCTL_MDS1_CHAN_GET_INFO ...6
IOCTL_MDS1_CHAN_RESET_FIFOS ..7
IOCTL_MDS1_CHAN_SET_CONFIG ...7
IOCTL_MDS1_CHAN_GET_CONFIG ...7
IOCTL_MDS1_CHAN_GET_STATUS ..7
IOCTL_MDS1_CHAN_SET_FIFO_LEVELS..7
IOCTL_MDS1_CHAN_GET_FIFO_LEVELS ...8
IOCTL_MDS1_CHAN_WRITE_FIFO..8
IOCTL_MDS1_CHAN_READ_FIFO ...8
IOCTL_MDS1_CHAN_GET_FIFO_COUNTS..8
IOCTL_MDS1_CHAN_WAIT_ON_INTERRUPT...9
IOCTL_MDS1_CHAN_ENABLE_INTERRUPT ...9
IOCTL_MDS1_CHAN_DISABLE_INTERRUPT ..9
IOCTL_MDS1_CHAN_FORCE_INTERRUPT ...9
IOCTL_MDS1_CHAN_GET_ISR_STATUS ..10
IOCTL_MDS1_CHAN_GET_UNIT_ID ..10

Write ..11
Read ...11

Warranty and Repair ...11
Service Policy ...12
Out of Warranty Repairs ...12
For Service Contact: ...12

 Embedded Hardware and Software Solutions Page 4 of 12

Introduction
The pb3_mds1 and mds1_chan drivers are Linux 2.6 device drivers for the PMC-
BiSerial-III MDS1 from Dynamic Engineering. The PMC-BiSerial-III MDS1 has a
Spartan3-1500 Xilinx FPGA to implement the PCI interface, FIFOs and protocol
control and status for four serial channels using Manchester encoding. Each
channel uses one RS-485 data input and one RS-485 data output. There is a
programmable PLL with two clock outputs. One drives the 2x internal clock
reference for the transmit state-machine and the other drives the 8x internal
clock reference for the receive state-machine. There are two 1k x 32-bit data
FIFOs for each channel, one for the transmit data and one for the receive data.

When the pb3_mds1 module is installed, it interfaces with the PCI system
configuration utility to acquire the memory and interrupt resources for each
device installed. An mds1 bus is created for each device and four channel
devices are allocated. The interrupt is assigned and the address space
partitioned for the four channel devices. When the mds1_chan driver is installed,
it probes the mds1 bus and finds and initializes the four channel devices for each
board. It allocates read and write list memory to hold the DMA page descriptors
that are used by the hardware to perform scatter-gather DMA.

Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the PMC-BiSerial-III
MDS1 user manual (also referred to as the hardware manual).

Driver Installation
The source files and makefiles for the drivers and test application are supplied in
the driver package in a zip file. Copy the directory structure to the computer
where the driver is to be installed. From the top-level directory type “make” to
build the object files then type “make install” to copy the files to the target location
(/lib/modules/$(VERSION)/kernel/drivers/misc/ for the driver and
/usr/local/bin/ for the test app). If desired type “make clean” to remove interim
files.

A load_pb3mds1 script is provided that will load the base driver, parse the
/proc/devices file for the device’s major number, count the number of entries in
the /sys/bus/mds1/devices/ directory to determine the number of boards
installed, create the required number of /dev/pb3_mds1_x (where x is the zero

 Embedded Hardware and Software Solutions Page 5 of 12

based board number) device nodes, load the channel driver, find that major
number and create the required number of /dev/mds1_chan_x device nodes as
well.

The pb3_mds1_api.h and mds1_chan_api.h files are C header files that define the
Application Program Interface (API) to the drivers and contain the relevant bit
defines for the control/status registers on the PMC-BiSerial-III MDS1.

The user_app source code will provide examples of how to use the driver calls to
control the hardware.

Driver Startup
Install the hardware and boot the computer. After the drivers have been installed
run the load_pb3mds1 script to start the drivers and create the device interface
nodes.

Handles can be opened to a specific board by using the open() function call and
passing in the appropriate device names.

Below is example code for opening handles for device dev_num.

 sprintf(Name, "/dev/pb3_mds1_%d", dev_num);
 hpb3_mds1 = open(Name , O_RDWR);
 if(hpb3_mds1 < 2)
 {
 printf("\n%s FAILED to open!\n", Name);
 return 1;
 }
 cdev_num = 4 * dev_num;
 for(i = 0; i < 4; i++)
 {
 sprintf(Name, "/dev/mds1_chan_%d", cdev_num + i);
 hmds1_chan[i] = open(Name , O_RDWR);
 if(hmds1_chan[i] < 2)
 {
 printf("\n%s FAILED to open!\n", Name);
 return 1;
 }
 }

 Embedded Hardware and Software Solutions Page 6 of 12

IO Controls
The driver uses ioctl() calls to configure the device and obtain status. The
parameters passed to the ioctl() function include the handle obtained from the
open() call, an integer command defined in the API header files and an optional
parameter used to pass data in and/or out of the device. The ioctl commands
defined for the PMC-BiSerial-III MDS1 are listed below.

IOCTL_PB3_MDS1_GET_INFO

Function: Returns the Driver version, Xilinx revision, PLL device ID and Switch value.
Input: None
Output: PB3_MDS1_DRIVER_DEVICE_INFO structure
Notes: Switch value is the configuration of the on-board dip-switch that has been
selected by the user (see the board silk screen for bit position and polarity). See
pb3_mds1_api.h for the definition of PB3_MDS1_DRIVER_DEVICE_INFO.

IOCTL_PB3_MDS1_LOAD_PLL_DATA

Function: Loads the internal registers of the PLL.
Input: PB3_MDS1_PLL_DATA structure
Output: None
Notes: The PB3_MDS1_PLL_DATA structure has only one field: Data – an array
of 40 bytes containing the PLL register data to write.

IOCTL_PB3_MDS1_READ_PLL_DATA

Function: Returns the contents of the PLL’s internal registers.
Input: None
Output: PB3_MDS1_PLL_DATA structure
Notes: The register data is output in the PB3_MDS1_PLL_DATA structure in an
array of 40 bytes.

IOCTL_MDS1_CHAN_GET_INFO

Function: Returns the Driver version and Instance number.
Input: None
Output: MDS1_CHAN_DRIVER_DEVICE_INFO structure
Notes: See mds1_chan_api.h for the definition of
MDS1_CHAN_DRIVER_DEVICE_INFO.

 Embedded Hardware and Software Solutions Page 7 of 12

IOCTL_MDS1_CHAN_RESET_FIFOS

Function: Resets the channel’s FIFOs.
Input: None
Output: None
Notes: Resets the Tx and Rx FIFOs for the referenced channel.

IOCTL_MDS1_CHAN_SET_CONFIG

Function: Writes to the channel’s control register.
Input: Value of the control register (unsigned long integer)
Output: None
Notes: Only the bits in the CNTRL_MASK are controlled by this command. See
the bit definitions in mds1_chan_api.h for information on determining this value.

IOCTL_MDS1_CHAN_GET_CONFIG

Function: Returns the configuration of the control register.
Input: None
Output: Value of control register (unsigned long integer)
Notes: The return value includes the bits in CNTRL_MASK and
CNTRL_DMA_WREN, CNTRL_DMA_RDEN and CNTRL_MINTEN. This command
is used mainly for testing.

IOCTL_MDS1_CHAN_GET_STATUS

Function: Returns the channel’s status value and clears the latched status bits.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: See mds1_chan_api.h for the status bit definitions. Only the bits in
STATUS_MASK will be returned. The bits in STATUS_LATCH_MASK will be
cleared by this call only if they are set when the register is read. This prevents
the possibility of missing an interrupt condition that occurs after the register read
but before the register write that clears the bits.

IOCTL_MDS1_CHAN_SET_FIFO_LEVELS

Function: Sets the channel’s receiver almost full and transmitter almost empty levels.
Input: MDS1_CHAN_FIFO_LEVELS structure
Output: None
Notes: These FIFO levels are used to determine status when the FIFO data counts
reach the specified levels. See mds1_chan_api.h for the definition of
MDS1_CHAN_FIFO_LEVELS.

 Embedded Hardware and Software Solutions Page 8 of 12

IOCTL_MDS1_CHAN_GET_FIFO_LEVELS

Function: Returns the channel’s receiver almost full and transmitter almost empty
levels.
Input: None
Output: MDS1_CHAN_FIFO_LEVELS structure
Notes: See mds1_chan_api.h for the definition of MDS1_CHAN_FIFO_LEVELS.

IOCTL_MDS1_CHAN_WRITE_FIFO

Function: Writes a single data word to the channel’s transmit FIFO.
Input: FIFO data word (unsigned long integer)
Output: None
Notes: Normally the write command is used to load data into the device. This
call can be used for small amounts of data, but is much more inefficient for a
transfer of any larger size.

IOCTL_MDS1_CHAN_READ_FIFO

Function: Reads a data word from the channel’s receive FIFO.
Input: None
Output: FIFO data word (unsigned long integer)
Notes: Normally the read command is used to read data from the device. This
call can be used for small amounts of data, but is much more inefficient for a
transfer of any larger size.

IOCTL_MDS1_CHAN_GET_FIFO_COUNTS

Function: Returns the number of data words in the transmit and receive FIFOs.
Input: None
Output: MDS1_CHAN_FIFO_COUNTS structure
Notes: Returns the number of words in the referenced channels I/O data
circuitry. For the transmitter this can be a maximum of one more than the FIFO
size and for the receiver the maximum data-count can be as much as four words
more than the FIFO size. The excess is due to data pipe-line latches in the I/O
stream. See mds1_chan_api.h for the definition of MDS1_CHAN_FIFO_COUNTS.

 Embedded Hardware and Software Solutions Page 9 of 12

IOCTL_MDS1_CHAN_WAIT_ON_INTERRUPT

Function: Initiates a wait state for the current execution thread to allow the user
code to respond to interrupt conditions.
Input: Time-out value in jiffies (jiffy = 10 milliseconds)
Output: none
Notes: This call is made in the user interrupt service routine to allow user-
specified interrupt handlers for enabled interrupt conditions. The input parameter
is a time-out value that causes the call to abort if the interrupt doesn’t occur
within the specified time. If the timeout is zero, the call will wait indefinitely for the
interrupt to occur. The DMA interrupts do not use this mechanism; they are
controlled automatically by the driver.

IOCTL_MDS1_CHAN_ENABLE_INTERRUPT

Function: Enables the master interrupt.
Input: none
Output: none
Notes: This command must be run to allow the board to respond to user
interrupts. The master interrupt enable is disabled in the driver interrupt service
routine; therefore this command must be run after each user interrupt occurs in
order to respond to the next interrupt.

IOCTL_MDS1_CHAN_DISABLE_INTERRUPT

Function: Disables the master interrupt.
Input: none
Output: none
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_MDS1_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur.
Input: none
Output: none
Notes: Causes an interrupt to be asserted on the PCI bus if the master interrupt
is enabled. This call is used for development, to test interrupt processing.

 Embedded Hardware and Software Solutions Page 10 of 12

IOCTL_MDS1_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status that was read in the ISR from the last
user interrupt.
Input: none
Output: Interrupt status value and time-out status (MDS1_CHAN_ISR_STAT
structure)
Notes: Returns the interrupt status that was read in the interrupt service routine
for the last user interrupt serviced. If TimedOut is true, the time-out expired
before the interrupt occurred.

IOCTL_MDS1_CHAN_GET_UNIT_ID

Function: Returns the unit ID read from the channel status register.
Input: none
Output: ID value (unsigned char)
Notes: When a data-block is received the last 16-bit word contains the unit id in
bits 14 to 7. The receive state-machine will shift this value to bits 7 to 0 and
store it in a latch. This call will return the unit id that was read in the last data
block received. Although the unit id is read from the status port, this call is
independent from the GET_STATUS call and has no effect on latched status bits
or other status values.

 Embedded Hardware and Software Solutions Page 11 of 12

Write
PMC-BiSerial-III MDS1 transmit data is written to the device using the write
command. A handle to the device, a pointer to a pre-allocated buffer that
contains the data to write and an unsigned long integer that represents the
amount of data to write in bytes are passed to the write call. The driver will
obtain physical addresses to the pages containing the data and will set-up a list of
page descriptors in its list memory. The physical address of the first list entry is
written to the board, which performs a bus-master scatter-gather DMA to
transfer the data.

Read
PMC-BiSerial-III MDS1 received data is read from the device using the read
command. A handle to the device, a pointer to a pre-allocated buffer that will
contain the data read and an unsigned long integer that represents the amount of
data to read in bytes are passed to the read call. The driver will obtain physical
addresses to the buffer memory pages and will set-up a list of page descriptors in
its list memory. The physical address of the first list entry is written to the board,
which performs a bus-master scatter-gather DMA to transfer the data.

Warranty and Repair
Dynamic Engineering warrants this product to be free from defects under normal
use and service and in its original, unmodified condition, for a period of one year
from the time of purchase. If the product is found to be defective within the
terms of this warranty, Dynamic Engineering's sole responsibility shall be to
repair, or at Dynamic Engineering's sole option to replace, the defective product.

Dynamic Engineering's warranty of and liability for defective products is limited to
that set forth herein. Dynamic Engineering disclaims and excludes all other
product warranties and product liability, expressed or implied, including but not
limited to any implied warranties of merchandisability or fitness for a particular
purpose or use, liability for negligence in manufacture or shipment of product,
liability for injury to persons or property, or for any incidental or consequential
damages.

Dynamic Engineering’s products are not authorized for use as critical components
in life support devices or systems without the express written approval of the
president of Dynamic Engineering.

 Embedded Hardware and Software Solutions Page 12 of 12

Service Policy
Before returning a product for repair, verify as well as possible that the driver is
at fault. The driver has gone through extensive testing and in most cases it will
be “cockpit error” rather than an error with the driver. When you are sure or at
least willing to pay to have someone help then call the Customer Service
Department and arrange to speak with an engineer. We will work with you to
determine the cause of the issue. If the issue is one of a defective driver we will
correct the problem and provide an updated module(s) to you [no cost]. If the
issue is of the customer’s making [anything that is not the driver] the engineering
time will be invoiced to the customer. Pre-approval may be required in some
cases depending on the customer’s invoicing policy.

Out of Warranty Repairs
Out of warranty support will be billed. The current minimum repair charge is
$125. An open PO will be required.

For Service Contact:
Customer Service Department
Dynamic Engineering
435 Park Dr.
Ben Lomond, CA 95005
831-336-8891
831-336-3840 fax

support@dyneng.com

All information provided is Copyright Dynamic Engineering.

