
DYNAMIC ENGINEERING
150 DuBois St. Suite C Santa Cruz CA 95060

831-457-8891 Fax 831-457-4793
 http://www.dyneng.com

sales@dyneng.com
 Est. 1988

Software User’s Guide
(Linux)

PMC-BISERIAL-III BAE9
Eight-Channel UART Interface

PMC Module
Revision B1

DRAFT

 Embedded Solutions Page 2

PMC-BiSerial-III BAE9
Eight-Channel
PMC Base UART Interface

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 FAX

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right
to make improvements or changes in the
product described in this document at any time
and without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2012-2013 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Revised 3/18/13

 Embedded Solutions Page 3

Table of Contents

PRODUCT DESCRIPTION 4

Software Description 4

INSTALLATION 4

APPLICATION PROGRAMMING MODEL 4

SAMPLE APPLICATION 6

Warranty and Repair 7

Service Policy 7

Out of Warranty Repairs 7

For Service Contact: 7

 Embedded Solutions Page 4

Product Description

The PMC compatible PMC-BiSerial-III has 8 I/0 channels each populated with
two RS-485 transceivers. Channels may be operated in half or full-duplex
modes. Hardware flow control (RTS/CTS) may be enabled and can be operated
in pulse or level modes. Hardware implements a programmable RS-485
“delay_rts_before_send”, that is, a delay after RTS detection, before
transmission begins. Further, repeated transmission can be enabled which
occurs at a periodic rate, or upon RTS assertion and then at a periodic rate. The
BiSerial-III currently supports baud rates of 10Mbps to 2.5 Mbps.

For a detailed description of the hardware including register definitions, see HW
User Manual, PMC-BiSerial-III, revision B1.

Software Description

The PMC-BiSerial-III driver utilizes the standard Linux serial layer implemented
in the generic serial core. Almost all application interaction with the driver occurs
via this layer. The only required custom ioctl is DE_SET_TERM which allows the
application to enable/disable RTS input signal termination. Other custom ioctls
are provided to read and write channel registers which are available to aid
debug, but must be used with caution as undesired interactions with nominal
driver operation may be effected.

Installation

1) Create the /dev/ttyDExx devices by either editing your /etc/device_table
and adding the following line assuming the default major/minor device
numbers do not conflict with other devices already present:
/det/ttyDE c 640 0 5 204 5 0 1 8 // Assuming 1 I/O card
This will create the specified devices upon boot, otherwise you may

 create the devices manually upon every reboot via the MKDEV command.
2) Copy de_BiSerBae9.c and de_BiSerBae9.h to your module build

directory. Invoke the system “make”
3) Copy the resulting de_BiSerBae9.ko module to the target platform.
4) Execute insmod de_BiSerBae9.ko

Application Programming model

As previously mentioned, standard serial interfaces/methods are utilized for
configuring and retrieving status from the I/O channels. Standard open, read,

 Embedded Solutions Page 5

write operations are of course supported as well. Ports by default are initialized
to full-duplex, 2.5 Mbps baud rate, no parity, one stop bit, flow control disabled.

Channel setup/control is accomplished via the standard method tcsetattr:
termios.c_cflag applicable fields:

CSTOPB enable 2 stop bits
PARENB enable parity generation
CMSPAR enable “stick” parity (If PAODD set, parity bit always 1,

otherwise0)
PARODD parity is odd

termios.c_iflag applicable fields:

INPCK Enable parity checking
IGNPAR Don’t count parity/framing errors
ITERM Dynamic Engineering extension, enable receiver shunt

termination

Baud rate is set via standard method cfsetspeed due to non-standard custom
speeds. tcsetattr must be invoked after speed is set so the baud rate setting is
applied.

RS485 control is accomplished via the standard serial ioctl TIOCSRS485:
serial_rs485.flag applicable fields:

DE_SER_RTS_ENBL Enable RTS (overloads SER_RS485_ENABLED)
DE_SER_RTS_IN_POL Polarity of input RTS is active high, else low (same as

standard def., SER_RS485_RTS_ON_SEND,
renamed for clarity)

DE_SER_RTS_OUT_POL Polarity of output RTS is active high, else low (same
as standard def. SER_RS485_RTS_AFTER_SEND,
renamed for clarity)

DE_SER_RTS_SEL Select input signal to be utilized for RTS, 4 bit field
with valid values 0-9. Dynamic Engineering
extension.

The following indices apply to the serial_rs485.padding[] array which is being
utilized to set RTS signal monitoring parameters, all parameters are specified in
units of .100 usec based upon PLL clock B frequency of 10 Mhz. This is subject
to change if a custom/new PLL file is loaded.

DE_SER_MIN_LOW_IDX Minimum low bit period

 Embedded Solutions Page 6

DE_SER_MAX_LOW_IDX Maximum low bit period
DE_SER_MIN_HI_IDX Minimum high bit period
DE_SER_MAX_HI_IDX Maximum high bit period

Port statistics can be retrieved by invoking the standard serial ioctl
TIOCGICOUNT. This includes Dynamic Engineering overloads/extensions for
RTS monitoring counts. Upon return from the ioctl, the structure should be cast
as de_uart_icount_t, definition is a follows:

typedef struct de_uart_icount {
 /* Count of excessive high-level durations */
 unsigned long rts_hi_long;
 /* Count of insufficient high-level durations */
 unsigned long rts_hi_short;
 /* Count of excessive low-level durations */
 /* Count of excessive low-level durations */
 unsigned long rts_low_long;
 unsigned long rts_low_short;
 /* Remaining fields retain standard definitions */
 unsigned long rx;
 unsigned long tx;
 unsigned long overrun;
 unsigned long parity;
 unsigned long brk; /* N/A */
 unsigned long brk_overrun; /* N/A */
} de_uart_icount_t;

Sample application

A sample application, de_BiSerApp.c is provided to demonstrate configuration,
ioctl invocation, and execution of various modes. See de_BiSerApp.c for details.

1) Compile the sample application for your platform, the output executable
for this example is dyn_app. The input file name is de_BiSerApp.c

2) The sample application is designed to be invoked from separate
processes such as 2 different rsh sessions.

3) The sample app assumes either a Dynamic Engineering full or half duplex
test fixture is attached.

Usage is as follows:

dyn_app r(reader)|w(riter) f(ull duplex)|h(alf duplex) c(optional continuous)
Note: Reader most be invoked first, two processes are utilized to
demonstrate SMP “safeness”

 Embedded Solutions Page 7

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the
suspected unit is at fault. Then call the Customer Service Department for a
RETURN MATERIAL AUTHORIZATION (RMA) number. Carefully package the
unit, in the original shipping carton if this is available, and ship prepaid and
insured with the RMA number clearly written on the outside of the package.
Include a return address and the telephone number of a technical contact. For
out-of-warranty repairs, a purchase order for repair charges must accompany the
return. Dynamic Engineering will not be responsible for damages due to
improper packaging of returned items. For service on Dynamic Engineering
Products not purchased directly from Dynamic Engineering contact your reseller.
Products returned to Dynamic Engineering for repair by other than the original
customer will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The current
minimum repair charge is $150. Customer approval will be obtained before
repairing any item if the repair charges will exceed one half of the quantity one
list price for that unit. Return transportation and insurance will be billed as part of
the repair and is in addition to the minimum charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
InterNet Address support@dyneng.com

