
DYNAMIC ENGINEERING
150 DuBois St. Suite C Santa Cruz CA 95060

831-457-8891 Fax 831-457-4793
 http://www.dyneng.com

sales@dyneng.com
 Est. 1988

Software User’s Guide
(VxWorks-6.9)

SpaceWire
Four-Channel SpaceWire Interface

http://www.dyneng.com/
mailto:sales@dyneng.com

 Embedded Solutions Page 3

SpaceWire

Dynamic Engineering
150 DuBois St Suite C
Santa Cruz, CA 95060
831-457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2019-2020 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Revised 02/19/2020

 Embedded Solutions Page 4

Table of Contents

PRODUCT DESCRIPTION 5

Software Description 5

INSTALLATION 6

VXBUS DRIVER METHODS 7

SAMPLE APPLICATION 7

Invocation parameters 7

Warranty and Repair 8

Service Policy 8
Out of Warranty Repairs 8

For Service Contact: 8

 Embedded Solutions Page 5

Product Description

The SpaceWire I/O card is available in multiple formats. All variants support four
channels or ports of the SpaceWire protocol. Various configurations are
available including addition of external FIFOs to support further burst capability.

This driver supports SpaceWire Xilinx Design Rev 10 or greater and all BK
revisions.

For a detailed description of the hardware including register definitions, see HW
User Manual, SpaceWire.

Software Description

The SpaceWire driver supports simultaneous operation of all ports
independently. The driver auto-detects the presence of external FIFOs on a per
port basis and controls the HW accordingly.

Some BSPs map host memory to a non-zero base for PCI externally visible
memory. If applicable, define DE_EXT_PCI_MEM_BASE found in de_SpwrDrv.c
to the appropriate base address for your BSP. A symptom of this issue is that
DMA transfers do not complete.

The driver has been validated on VxWorks revision 6.9 on a P2020 platform
(multi-core PPC) which is big endian.

Application Programming model

The following is the applicable section from the SpaceWire specification ECSS-
E-ST-50-12C:

4.8 Application programming interface
The application programming interface (API) is not defined in this Standard.

However, a typical application interface comprises the following services:

• Open link: Starts a link interface and attempts to establish a connection

with the link interface at the other end of the link.

• Close link: Stops a link and breaks the connection.

• Write packet: Sends a packet out of the link interface.

• Read packet: Reads a packet from the link interface.

• Status and configuration: Reads the current status of the link interface

and sets the link configuration.

The Dynamic Engineering driver implements this functionality as follows:

 Embedded Solutions Page 6

1) During system initialization, a default configuration is applied. The port
is configured in internal loopback, thus external link access is disabled.
Link will remain disconnected.

2) Port must be configured via DE_CONFIG_PT ioctl to enable link and
read/write access to remote end of the link. If the link connection is not
established in 4 seconds, the ioctl will return failure status code.

3) Link status may be interrogated via DE_GET_STATS ioctl. Current
link state as well as accumulated error counts and I/O byte counts are
returned.

4) Read/write implemented via deReadPacket/deSendPacket APIs.
5) Links are closed upon system shutdown.

Configuration Considerations

Two types of link connection/establishment are supported, manual and auto-
start. The value of this parameter is determined by the
requirements/implementation of the external device. Nominally, this parameter
should be set to 0 (manual start). If problems establishing the link are
encountered, set this parameter to 1 (auto-start). This allows the other end of the
link to initiate the link start.

Besides link connection parameters, the following are set via the config ioctl:
Time code generation, DMA priority, packet mode (enable/disable), and link
speed in MHz.

Installation

Copy the tar ball containing this driver to the
${WIND_BASE)/target/3rdparty/dyneng directory of your project. If a dyneng
directory does not exist, create one. After extraction you should find the following
files in the dyneng tree:

Makefile README
de_SpaceWire

40de_Spwr.cdf deSendPacket.c deSendPacket.mk deIoctl.c
deIoctl.mk deRcvPacket.c deRcvPacket.mk de_SpwrDrv.c,
de_SpwrDrv.dc de_SpwrDrv.dr de_SpwrDrv.h de_Common.h,
dePllDefs.h Makefile README release_notes.txt

 de_SpaceWire/apps
 de_IoApp.c, de_IoctlApp.c, Makefile

The README file contained in de_SpaceWire directory contains the
configuration and build steps required to include this driver in your VxWorks

 Embedded Solutions Page 7

image. This information is specifically not included in this document to avoid
conflicts that may occur due to updates in the source tree.

VxBus driver methods

The SpaceWire driver supports custom ioctl, and port methods (deIoctl,
deSendPacket deRcvPacket) implemented via VxBus.

The application/middleware must configure a port prior to invoking the port
methods. This is the only ioctl required operationally. The remaining ioctls are
either informational such as fetching I/O card specific parameters, obtaining
current interrupt count, or provided to enable debug or user specific
customizations. Please see dyneng/de_SpaceWire/de_SpwrDrv.h for a detailed
description of the supported driver methods.

Sample application

Two sample applications (de_IoApp.c, de_IoctlApp.c) are provided to
demonstrate configuration, ioctl invocation, and I/O in the supported modes.

Invocation parameters

de_io (VXB_DEVICE_ID pDev, lpbck (0=ext,1=wrapback), port(0-3),
frame_len(bytes), reader(0=writer,1=reader), iter)

pDev can be obtained by issuing vxBusShow, find the entry
corresponding to the device to be utilized by this application, pDev =
0x0034c308 in the following example:

 PCI_BUS @ 0x003467C8 with bridge @ 0x0034c308

 Device Instances:

de_SpwrDrv unit 0 on PCI_BUS @ 0x0034cb08 with busInfo 0x0000000

Second parameter I/O mode (external or internal loopback) followed by port to be
exercised, frame/packet length, reader/writer, and number of iterations to
execute.

The application can be invoked from the serial console, or a telnet shell. For
internal loopback the application will transmit and receive on the same port.
Thus, only one instance of the app is required to exercise both Tx and Rx.

 Embedded Solutions Page 8

In external I/O mode 2 instances of the app must be invoked to exercise both the
read and write ports. It is assumed the two ports are connected directly or via a
switch.

Warranty and Repair

Please refer to the warranty page on our website for the current warranty offered
and options.

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the suspected
unit is at fault. Then call the Customer Service Department for a RETURN
MATERIAL AUTHORIZATION (RMA) number. Carefully package the unit, in the
original shipping carton if this is available, and ship prepaid and insured with the
RMA number clearly written on the outside of the package. Include a return
address and the telephone number of a technical contact. For out-of-warranty
repairs, a purchase order for repair charges must accompany the return.
Dynamic Engineering will not be responsible for damages due to improper
packaging of returned items. For service on Dynamic Engineering Products not
purchased directly from Dynamic Engineering contact your reseller. Products
returned to Dynamic Engineering for repair by other than the original customer
will be treated as out-of-warranty.

Out of Warranty Repairs

Out of warranty repairs will be billed on a material and labor basis. The Customer
approval will be obtained before repairing any item if the repair charges will
exceed one half of the quantity one list price for that unit. Return transportation
and insurance will be billed as part of the repair and is in addition to the minimum
charge.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois St. Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 fax
InterNet Address support@dyneng.com

http://www.dyneng.com/warranty.html
mailto:support@dyneng.com

