
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891

https://www.dyneng.com
sales@dyneng.com

Est. 1988

SpWrBkBase
&

SpWrBkChan

Win10 Driver Documentation

PMC-SpaceWire-BK
PCI-SpaceWire-BK
PCIe-SpaceWire-BK
PC104p-SpaceWire-BK

Developed with Windows Driver Foundation

Base Revision 01p2

Corresponding Hardware:
(PMC) 10-2004-0809,10,11

(PCI) 10-2006-0104, 05
(PCIe) 10-2018-1801, 02, 03
(PC104p) 10-2008-0903, 04

 Embedded Solutions Page 2 of 19

SpWrBkBase, SpWrBkChan
WDF Device Drivers for the
PMC/PCI/PCIe-SpaceWire-BK
4-Channel SpaceWireBk Interface

Dynamic Engineering
150 DuBois, Suite B/C
Santa Cruz, CA 95060
(831) 457-8891

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2004-2021 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by
their respective manufacturers.
Revised 8/14/2019

 Embedded Solutions Page 3 of 19

Introduction ... 4
Note ... 4
Driver Installation ... 5
Windows 10 Installation ... 5
Driver Startup .. 5
IO Controls .. 6

IOCTL_SPWRBK_BASE_GET_INFO .. 6
IOCTL_SPWRBK_BASE_LOAD_PLL_DATA .. 7
IOCTL_SPWRBK_BASE_READ_PLL_DATA .. 7
IOCTL_SPWRBK_BASE_SET_TIME_CONFIG .. 8
IOCTL_SPWRBK_BASE_GET_TIME_CONFIG .. 9
IOCTL_SPWRBK_BASE_SET_ENDIAN .. 9
IOCTL_SPWRBK_BRIDGE_RECONFIG .. 9
IOCTL_SPWRBK_CHAN_GET_INFO ... 10
IOCTL_SPWRBK_CHAN_SET_CONFIG ... 10
IOCTL_SPWRBK_CHAN_GET_CONFIG ... 11
IOCTL_SPWRBK_CHAN_GET_STATUS ... 11
IOCTL_SPWRBK_CHAN_WRITE_PACKET_LENGTH .. 12
IOCTL_SPWRBK_CHAN_READ_PACKET_LENGTH ... 13
IOCTL_SPWRBK_CHAN_SET_FIFO_LEVELS ... 13
IOCTL_SPWRBK_CHAN_GET_FIFO_LEVELS ... 13
IOCTL_SPWRBK_CHAN_GET_FIFO_COUNTS .. 14
IOCTL_SPWRBK_CHAN_RESET_FIFOS ... 14
IOCTL_SPWRBK_CHAN_WRITE_FIFO .. 14
IOCTL_SPWRBK_CHAN_READ_FIFO .. 15
IOCTL_SPWRBK_CHAN_REGISTER_EVENT .. 15
IOCTL_SPWRBK_CHAN_ENABLE_INTERRUPT ... 15
IOCTL_SPWRBK_CHAN_DISABLE_INTERRUPT .. 15
IOCTL_SPWRBK_CHAN_FORCE_INTERRUPT ... 15
IOCTL_SPWRBK_CHAN_GET_ISR_STATUS .. 16
IOCTL_SPWRBK_CHAN_READ_TIME_CODE ... 16
IOCTL_SPWRBK_CHAN_GET_LINK_STATUS .. 16
IOCTL_SPWRBK_CHAN_SET_RPKT_LEN_AFL_LVL .. 17
IOCTL_SPWRBK_CHAN_GET_RPKT_LEN_AFL_LVL .. 17

Write .. 18
Read .. 18

Warranty and Repair ... 19
Service Policy ... 19

Support ... 19
For Service Contact: ... 19

Table of Contents

 Embedded Solutions Page 4 of 19

Introduction
The SpWrBkBase and SpWrBkChan drivers are Windows device drivers for
PMC/PCI/PC104p/PCIe-SpaceWire-BK. These drivers were developed with the
Windows Driver Foundation version 1.19 (WDF) from Microsoft, specifically the Kernel-
Mode Driver Framework (KMDF).

The SpaceWire-BK design utilizes a Xilinx Spartan 6 FPGA to implement the PCI
interface, FIFOs, protocol control and status for four SpaceWire-BK channels. A
programmable PLL with four clock outputs creates a separate programmable I/O clock
for each SpaceWire-BK port. Each channel has two 16k x 32-bit internal data FIFOs
and two 1023 x 32-bit packet-length FIFOs. Select channels may have additional
external 128k x 32-bit FIFOs. The -128 version has external FIFOs added to the TX
and RX circuit of channel zero for a total of 144K x 32-bits. The -128RX version has
external FIFOs added to the RX circuit of channels zero and one. These different
versions are distinguished by the 4-bit Xilinx type field of the user info register. A one in
this field indicates that all channels have only internal FIFOs, a two indicates the -128
version and a three indicates the -128RX version.

When the SpaceWire-BK board is recognized by the PCI bus configuration utility it will
load the SpWrBkBase driver which will create a device object for each board, initialize
the hardware, create child devices for the four I/O channels and request loading of the
SpWrBkChan driver. The SpWrBkChan driver will create a device object for each of the
I/O channels and perform initialization on each channel. IO Control calls (IOCTLs) are
used to configure the board and read status. Read and Write calls are used to move
blocks of data in and out of the I/O channel devices using DMA.

Note
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the SpaceWire-BK hardware
manual. In addition, the UserAp reference SW package has examples of initializing,
configuring, and using the SpaceWire driver. The UserAp software is provided in
source form to allow user adaptation into their system.

The driver package is compiled and signed for x64 standard systems [not ARM etc.].

 Embedded Solutions Page 5 of 19

Driver Installation

There are several files provided in each driver package. These files include
SpWrBkPublic.h, SpWrBkBase.inf, SpWrBkBase.cat, SpWrBkBase.sys,
SpWrBkBasePublic.h, SpWrBkChan.inf, SpWrBkChan.cat, SpWrBkChan.sys and
SpWrBkChanPublic.h.

SpWrBkPublic.h, SpWrBkBasePublic.h and SpWrBkChanPublic.h are C header files
that define the Application Program Interface (API) for the SpWrBkBase and
SpWrBkChan drivers. These files are required at compile time by any application that
wishes to interface with the drivers, and are not needed for driver installation.

Windows 10 Installation
Copy SpWrBkBase.inf, SpWrBkBase.cat, SpWrBkBase.sys, SpWrBkChan.inf,
SpWrBkChan.cat and SpWrBkChan.sys to a USB drive or other removable memory
device as preferred.

With the SpaceWire-BK hardware installed, power-on the host computer and open the
Device Manager.

If Other PCI Bridge Device is not seen, select Scan for hardware changes from the
Action menu.

Right-click on the Other PCI Bridge Device and select Update driver from the pop-up
menu. Navigate to the memory device prepared above and select the folder containing
the driver files.

Once the Base driver has been installed, the four Channel Devices will be seen in the
Device Manager display. Right-click on each of the Channel Devices and select Update
driver from the pop-up menu and proceed as before to install the Channel driver to the
four Channel Devices.

Driver Startup
Once the drivers have been installed they will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in SpWrBkBasePublic.h and SpWrBkChanPublic.h. See main.c in the
SpWrBkUserApp project for an example of how to acquire handles for the base and four
channel devices.

 Embedded Solutions Page 6 of 19

Note: In order to build an application, you must link with setupapi.lib. See G_ALL.h
within the UserAp file set.

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the SpWrBkBase driver are described below:

IOCTL_SPWRBK_BASE_GET_INFO
Function: Returns the device driver revision, design revision, design type, user switch value,
device instance number and PLL device ID.
Input: None
Output: SPWRBK_BASE_DRIVER_DEVICE_INFO structure
Notes: The switch value is the configuration of the 8-bit onboard dipswitch that has
been selected by the user (see the board silk screen for bit position and polarity).
Instance number is the zero-based device number. See the definition of
SPWRBK_BASE_DRIVER_DEVICE_INFO below.

 // Driver/Device information
typedef struct _SPWRBK_BASE_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR DesignRev; // Design revision
 UCHAR DesignRevMin; // Design minor revision
 UCHAR DesignType; // Design type
 ULONG InstanceNum; // Board instance
 UCHAR SwitchValue; // Board user switch value
 UCHAR PllDeviceId;
 BOOLEAN BridgeCnfgd;
 } SPWRBK_BASE_DRIVER_DEVICE_INFO, *PSPWRBK_BASE_DRIVER_DEVICE_INFO;

 Embedded Solutions Page 7 of 19

IOCTL_SPWRBK_BASE_LOAD_PLL_DATA
Function: Writes to the internal registers of the PLL.
Input:
SPWRBK_BASE_PLL_DATA structure
Output: None
Notes: The SPWRBK_BASE_PLL_DATA structure has only one field: Data – an array
of 40 bytes containing the PLL register data to write. See below for the definition of
SPWRBK_BASE_PLL_DATA.

 // Structures for IOCTLs
#define PLL_MESSAGE1_SIZE 16
#define PLL_MESSAGE2_SIZE 24
#define PLL_MESSAGE_SIZE (PLL_MESSAGE1_SIZE + PLL_MESSAGE2_SIZE)

typedef struct _SPWRBK_BASE_PLL_DATA {
 UCHAR Data[PLL_MESSAGE_SIZE];
} SPWRBK_BASE_PLL_DATA;

IOCTL_SPWRBK_BASE_READ_PLL_DATA
Function: Returns the contents of the internal registers of the PLL.
Input: None
Output: SPWRBK_BASE_PLL_DATA structure
Notes: The register data is written to the SPWRBK_BASE_PLL_DATA structure in an
array of 40 bytes. See definition of SPWRBK_BASE_PLL_DATA above.

 Embedded Solutions Page 8 of 19

IOCTL_SPWRBK_BASE_SET_TIME_CONFIG
Function: Sets the time-code timing and routing on the SpaceWire-BK board.
Input: SPWRBK_BASE_TIME_CONFIG structure
Output: None
Notes: The master counter that controls the TICK_IN rate is clocked by the 80 MHz link
clock. Count, in the input data structure, is the count at which the master counter will
roll-over, increment the six-bit time-code count and issue a TICK_IN pulse. Flags
specifies the two control flag bits sent in bit 6 and 7 of the time-code data byte.
TimeSource is a four-value array of SPWRBK_TM_SRC values that determine the
source of time-codes sent by each of the four channels. These values specify one of
the following six time-code sources: Master timer, any of the four channel’s time-code
outputs, or none (disabled). See below for the definition of SPWRBK_TM_SRC
SPWRBK_BASE_TIME_CONFIG.

typedef enum _SPWRBK_TM_SRC {
 SPWRBKDISABLE,
 SPWRBKMASTER,
 SPWRBKCHAN0,
 SPWRBKCHAN1,
 SPWRBKCHAN2,
 SPWRBKCHAN3
} SPWRBK_TM_SRC, *PSPWRBK_TM_SRC;

typedef struct _SPWRBK_BASE_TIME_CONFIG {
 ULONG Count;
 UCHAR Flags;
 SPWRBK_TM_SRC TimeSource[SPWRBK_NUM_CHANNELS];
} SPWRBK_BASE_TIME_CONFIG, *PSPWRBK_BASE_TIME_CONFIG;

 Embedded Solutions Page 9 of 19

IOCTL_SPWRBK_BASE_GET_TIME_CONFIG
Function: Returns the time-code timing and routing on the SpaceWire-BK board.
Input: None
Output: SPWRBK_BASE_TIME_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_SPWRBK_BASE_SET_ENDIAN
Function: Changes the byte-ordering of the DMA data bus.
Input: Big-endian enable (BOOLEAN)
Output: None
Notes: When the input parameter is TRUE, the DMA data-bytes will be configured to
use big-endian byte-ordering. When the input parameter is FALSE, the DMA data-bytes
will be configured to use little-endian byte-ordering

IOCTL_SPWRBK_BRIDGE_RECONFIG
Function: Finds and configures the Tsi-384 or P17C9X130 PCIe to PCI Bridge if present.
Input: None
Output: None
Notes: Although the bridge should have already been configured when the driver
initialized the hardware, this call was added to enhance the DMA data throughput.
Occasionally the OS interferes with initial programming at start-up. This call allows the
enhanced settings to be applied. New with this release is the addition of the second
bridge type.

 Embedded Solutions Page 10 of 19

The IOCTLs defined for the SpWrBkChan driver are described below:

IOCTL_SPWRBK_CHAN_GET_INFO
Function: Returns the driver revision, instance number and transmit and receive FIFO sizes
as well as various parameters passed to the channel driver from the base driver.
Input: None
Output: SPWRBK_CHAN_DRIVER_DEVICE_INFO structure
Notes: See the definition of SPWRBK_CHAN_DRIVER_DEVICE_INFO below.

// Driver/Device information
typedef struct _SPWRBK_CHAN_DRIVER_DEVICE_INFO {
 UCHAR DriverRev;
 UCHAR ChannelNum;
 UCHAR DesignRev; // Design revision from base driver
 UCHAR DesignRevMin; // Design minor revision from base driver
 UCHAR DesignType; // Design type from base driver
 UCHAR SwitchValue; // Board user switch value from base driver
 ULONG InstanceNum; // Board instance from base driver
 ULONG TxFifoSize;
 ULONG RxFifoSize;
} SPWRBK_CHAN_DRIVER_DEVICE_INFO, *PSPWRBK_CHAN_DRIVER_DEVICE_INFO;

IOCTL_SPWRBK_CHAN_SET_CONFIG
Function: Specifies the channel control configuration.
Input: SPWRBK_CHAN_CONFIG structure
Output: None
Notes: Specifies the link startup behavior, enabled interrupt sources, DMA preemption
behavior, DMA status and other control parameters. See the definitions of
SPWRBK_START, SPWRBK_INTS, SPWRBK_DMA_PRMPT, SPWRBK_DMA_STAT
and SPWRBK_CHAN_CONFIG below.

typedef enum _SPWRBK_START {
 SPWRBK_STOP, // Channel link not connected
 SPWRBK_ISTRT, // Channel initiates link
 SPWRBK_ASTRT // Channel waits for a NULL to be received
} SPWRBK_START, *PSPWRBK_START;

typedef struct _SPWRBK_INTS {
 BOOLEAN TxAmtInt; // Transmit FIFO almost empty interrupt
 BOOLEAN RxAflInt; // Receive FIFO almost full interrupt
 BOOLEAN RxErrInt; // Reception error interrupt
 BOOLEAN RxPktInt; // Packet received interrupt
 BOOLEAN TmTckInt; // Time-code tick interrupt
} SPWRBK_INTS, *PSPWRBK_INTS;

 Embedded Solutions Page 11 of 19

 // Channel DMA priority (use sparingly)
typedef enum _SPWRBK_DMA_PRMPT {
 SPWRBK_NONE, // No priority
 SPWRBK_READ, // Read DMA has priority
 SPWRBK_WRITE, // Write DMA has priority
 SPWRBK_RDWR // Read and Write DMA have priority
} SPWRBK_DMA_PRMPT, *PSPWRBK_DMA_PRMPT;

typedef enum _SPWRBK_DMA_STAT {
 SPWRBK_BUSY, // Read and Write DMA both active
 SPWRBK_RD_RDY, // Read DMA idle
 SPWRBK_WR_RDY, // Write DMA idle
 SPWRBK_BOTH_RDY // Read and Write DMA both idle
} SPWRBK_DMA_STAT, *PSPWRBK_DMA_STAT;

typedef struct _SPWRBK_CHAN_CONFIG {
 UCHAR ClockDivide; // PLL frequency/(1..16) = I/O bit rate
 SPWRBK_START StartMode; // Link start mode (manual or auto)
 SPWRBK_INTS IntConfig; // Interrupt condition enables
 BOOLEAN NoPackets; // Disable packets
 BOOLEAN ReusePktLen; // Reuse a single packet-length
 BOOLEAN VldRxPktLen; // Return only valid Rx packet-lengths
 BOOLEAN FifoBypassEn; // Enables auto tx->rx FIFO transfer
 SPWRBK_DMA_PRMPT DmaPriority; // DMA preemption control
 SPWRBK_DMA_STAT DmaStatus; // DMA status (read-only)
} SPWRBK_CHAN_CONFIG, *PSPWRBK_CHAN_CONFIG;

IOCTL_SPWRBK_CHAN_GET_CONFIG
Function: Returns the fields set in the previous call.
Input: None
Output: SPWRBK_CHAN_CONFIG structure
Notes: See the definitions of SPWRBK_START, SPWRBK_INTS,
SPWRBK_DMA_PRMPT, SPWRBK_DMA_STAT and SPWRBK_CHAN_CONFIG
above.

IOCTL_SPWRBK_CHAN_GET_STATUS
Function: Returns the channel’s status register value and clears the latched status bits.
Input: None
Output: Value of the channel’s status register (unsigned long integer)
Notes: See the status bit definitions below. Only the bits in CHAN_STAT_MASK will be
returned. The bits in CHAN_STAT_LATCH_MASK will be cleared by this call only if
they are set when the register was read. This prevents the possibility of missing an
interrupt condition that occurs after the register has been read but before the latched
register bits are cleared. If the TICK Received interrupt is enabled, the time-code data
will be automatically read and the value returned with the ISR status from the interrupt
service routine, otherwise, the time-code data must be explicitly read with the read time-
code data call.

 Embedded Solutions Page 12 of 19

 // Status bit definitions
#define CHAN_STAT_TX_FF_MT 0x00000001 // Transmit FIFO empty
#define CHAN_STAT_TX_FF_AMT 0x00000002 // Transmit FIFO almost empty
#define CHAN_STAT_TX_FF_FL 0x00000004 // Transmit FIFO full
#define CHAN_STAT_TX_FF_VLD 0x00000008 // Transmit data valid (data in waiting to send latch)
#define CHAN_STAT_RX_FF_MT 0x00000010 // Receive FIFO empty
#define CHAN_STAT_RX_FF_AFL 0x00000020 // Receive FIFO almost full
#define CHAN_STAT_RX_FF_FL 0x00000040 // Receive FIFO full
#define CHAN_STAT_RX_FF_VLD 0x00000080 // Receive data valid (data in pipeline (4 words))
#define CHAN_STAT_PAR_ERR 0x00000100 // Parity error
#define CHAN_STAT_DSCNCT 0x00000200 // Disconnect error (no activity for > 850 ns)
#define CHAN_STAT_ESC_ERR 0x00000400 // Escape error (invalid escape sequence)
#define CHAN_STAT_CRDT_ERR 0x00000800 // Credit error (transmit or receive credit violation)
#define CHAN_STAT_RX_OVFL 0x00001000 // Receive FIFO overflow (write attempt to full FIFO)
#define CHAN_STAT_RX_ERROR 0x00002000 // Receive error (combines above 5 errors)
#define CHAN_STAT_PKT_DONE 0x00004000 // Receive packet complete (EOP or EEP received)
#define CHAN_STAT_TICK_RCVD 0x00008000 // Tick-out received (valid timecode)
#define CHAN_STAT_WR_DMA_INT 0x00010000 // Write DMA interrupt (shown for info only)
#define CHAN_STAT_RD_DMA_INT 0x00020000 // Read DMA interrupt (shown for info only)
#define CHAN_STAT_WR_DMA_ERR 0x00040000 // Write DMA error (abort or descriptor error)
#define CHAN_STAT_RD_DMA_ERR 0x00080000 // Read DMA error (abort or descriptor error)
#define CHAN_STAT_LINKED 0x00100000 // True if channel is successfully linked
#define CHAN_STAT_TX_PURGERR 0x00200000 // Transmitter purge error
#define CHAN_STAT_RX_PKTVLD 0x00400000 // Receive packet-length available to read
#define CHAN_STAT_INT_ACTIVE 0x00800000 // Enabled interrupt condition is active
#define CHAN_STAT_TM_DATA_MASK 0x3F000000 // Timecode data word (six bits)
#define CHAN_STAT_TX_AMT_LT 0x40000000 // Transmit FIFO almost empty (latched)
#define CHAN_STAT_RX_AFL_LT 0x80000000 // Receive FIFO almost full (latched)

#define CHAN_STAT_FIFO_MASK (CHAN_STAT_TX_FF_MT | CHAN_STAT_TX_FF_AMT | CHAN_STAT_TX_FF_FL |\
 CHAN_STAT_TX_FF_VLD | CHAN_STAT_RX_FF_MT | CHAN_STAT_RX_FF_AFL |\
 CHAN_STAT_RX_FF_FL | CHAN_STAT_RX_FF_VLD)

#define CHAN_STAT_LATCH_MASK (CHAN_STAT_PAR_ERR | CHAN_STAT_WR_DMA_ERR | CHAN_STAT_CRDT_ERR |\
 CHAN_STAT_DSCNCT | CHAN_STAT_RD_DMA_ERR | CHAN_STAT_RX_ERROR |\
 CHAN_STAT_ESC_ERR | CHAN_STAT_TX_AMT_LT | CHAN_STAT_PKT_DONE |\
 CHAN_STAT_RX_OVFL | CHAN_STAT_RX_AFL_LT | CHAN_STAT_TX_PURGERR)

#define CHAN_STAT_MASK (CHAN_STAT_WR_DMA_INT | CHAN_STAT_RX_PKTVLD | CHAN_STAT_LINKED|\
 CHAN_STAT_RD_DMA_INT | CHAN_STAT_FIFO_MASK | CHAN_STAT_LATCH_MASK |\
 CHAN_STAT_INT_ACTIVE | CHAN_STAT_TICK_RCVD | CHAN_STAT_TM_DATA_MASK)

IOCTL_SPWRBK_CHAN_WRITE_PACKET_LENGTH
Function: Writes a transmitter packet-length value to the packet-length FIFO.
Input: Packet length value (unsigned long integer)
Output: None
Notes: When operating in packet mode, no data will be sent until at least one value is
written to the transmit packet-length FIFO. Setting bit 31 high causes the transmitted
packet to be terminated with an EEP rather than an EOP.

 Embedded Solutions Page 13 of 19

IOCTL_SPWRBK_CHAN_READ_PACKET_LENGTH
Function: Reads a received packet-length value from the packet-length FIFO.
Input: None
Output: Packet length value (unsigned long integer)
Notes: Bits 30-0 are used for the packet-length (maximum of 2 G Bytes). If bit 31 is set
high, it indicates that either an error condition occurred during the reception of the
referenced packet or that the packet was terminated with an EEP. Reading the channel
status will indicate whether a connection error was detected.

IOCTL_SPWRBK_CHAN_SET_FIFO_LEVELS
Function: Sets the transmitter almost empty and receiver almost full levels for the channel.
Input: SPWRBK_CHAN_FIFO_LEVELS structure
Output: None
Notes: These values are initialized to the default values ⅛ FIFO and ⅞ FIFO
respectively when the driver initializes. The FIFO counts are compared to these levels
to set the value of the CHAN_STAT_TX_FF_AMT and CHAN_STAT_RX_FF_AFL
status bits and to latch the CHAN_STAT_TX_AMT_LT and CHAN_STAT_RX_AFL_LT
latched status bits. Also if the control bits CHAN_CNTRL_URGNT_OUT_EN and/or
CHAN_CNTRL_URGNT_IN_EN are set, the FIFO level values are used to determine
when to give priority to an output or input DMA channel that is running out of data or
room to store data. See the definition of SPWRBK_CHAN_FIFO_LEVELS below.

typedef struct _SPWRBK_CHAN_FIFO_LEVELS {
 ULONG AlmostFull;
 ULONG AlmostEmpty;
} SPWRBK_CHAN_FIFO_LEVELS, *PSPWRBK_CHAN_FIFO_LEVELS;

IOCTL_SPWRBK_CHAN_GET_FIFO_LEVELS
Function: Returns the transmitter almost empty and receiver almost full levels for the channel.
Input: None
Output: SPWRBK_CHAN_FIFO_LEVELS structure
Notes: Returns the values set in the previous call.

 Embedded Solutions Page 14 of 19

IOCTL_SPWRBK_CHAN_GET_FIFO_COUNTS
Function: Returns the number of data words in the transmit and receive data and packet-
length FIFOs.
Input: None
Output: SPWRBK_CHAN_FIFO_COUNTS structure
Notes: There is a one pipe-line latch for the transmit FIFO data and four for the receive
FIFO data. These are counted in the FIFO counts. That means, for the internal FIFO
version, the transmit count can be a maximum of 16,384 32-bit words and the receive
count can be a maximum of 16,387 32-bit words. For the -128 version on channel 0 the
transmit count can be a maximum of 147,455 32-bit words and the receive count can be
a maximum of 147,458 32-bit words. For the -128RX version on channel 0 and 1 the
receive count can be a maximum of 147,458 32-bit words. Other FIFOs not mentioned
match the internal FIFO version. The TxPktCount and RxPktCount fields can be a
maximum of 1023 packet lengths. See the definition of
SPWRBK_CHAN_FIFO_COUNTS below.

typedef struct _SPWRBK_CHAN_FIFO_COUNTS {
 ULONG TxCount; // Number of data words in the transmit data FIFO
 ULONG RxCount; // Number of data words in the receive data FIFO
 USHORT TxPktCount;// Number of values currently in the tx packet-length FIFO
 USHORT RxPktCount;// Number of values currently in the rx packet-length FIFO
} SPWRBK_CHAN_FIFO_COUNTS, *PSPWRBK_CHAN_FIFO_COUNTS;

IOCTL_SPWRBK_CHAN_RESET_FIFOS
Function: Resets one or both FIFOs for the referenced channel.
Input: SPWRBK_FIFO_SEL enumeration type
Output: None
Notes: Resets the transmit or receive FIFO or both depending on the input parameter
selection. Also resets the corresponding packet-length FIFO(s) and sets the
programmable almost full/empty levels back to the default values for the FIFO(s) that
were reset. See the definition of SPWRBK_FIFO_SEL below.

 // Used for FIFO reset call
typedef enum _SPWRBK_FIFO_SEL {
 SPWRBK_TX,
 SPWRBK_RX,
 SPWRBK_BOTH
} SPWRBK_FIFO_SEL, *PSPWRBK_FIFO_SEL;

IOCTL_SPWRBK_CHAN_WRITE_FIFO
Function: Writes a 32-bit data-word to the transmit FIFO.
Input: FIFO word (unsigned long integer)
Output: None
Notes: Used to make single-word accesses to the transmit FIFO instead of using DMA.

 Embedded Solutions Page 15 of 19

IOCTL_SPWRBK_CHAN_READ_FIFO
Function: Returns a 32-bit data word from the receive FIFO.
Input: None
Output: FIFO word (unsigned long integer)
Notes: Used to make single-word accesses to the receive FIFO instead of using DMA.

IOCTL_SPWRBK_CHAN_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt. The DMA
interrupts do not cause this event to be signaled.

IOCTL_SPWRBK_CHAN_ENABLE_INTERRUPT
Function: Enables the channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the board to respond to user interrupts.
The master interrupt enable is disabled in the driver interrupt service routine when a
user interrupt is serviced. Therefore this command must be run after each user
interrupt occurs to re-enable it.

IOCTL_SPWRBK_CHAN_DISABLE_INTERRUPT
Function: Disables the channel master interrupt.
Input: None
Output: None
Notes: This call is used when user interrupt processing is no longer desired.

IOCTL_SPWRBK_CHAN_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the PCI bus as long as the channel
master interrupt is enabled. This IOCTL is used for development, to test interrupt
processing.

 Embedded Solutions Page 16 of 19

IOCTL_SPWRBK_CHAN_GET_ISR_STATUS
Function: Returns the interrupt status read in the ISR from the last user interrupt.
Input: None
Output: Interrupt status value (unsigned long integer)
Notes: Returns the interrupt status that was read in the interrupt service routine of the
last interrupt caused by one of the enabled channel interrupts. The interrupts that deal
with the DMA transfers do not affect this value. The new field is true if the Status has
been updated since it was last read. See the definition of SPWRBK_CHAN_INT_STAT
below.

typedef struct _SPWRBK_CHAN_INT_STAT {
 ULONG Status;
 BOOLEAN New;
} SPWRBK_CHAN_INT_STAT, *PSPWRBK_CHAN_INT_STAT;

IOCTL_SPWRBK_CHAN_READ_TIME_CODE
Function: Returns the last time-code received and clears the tick received latched bit.
Input: None
Output: SPWRBK_CHAN_TIME_CODE structure
Notes: Returns the value of the time-code data byte last received in the Time field. The
New field will be set to TRUE if the time-code has not been previously read. Either by a
previous instance of this call or by an ISR responding to an enabled TICK_OUT
interrupt. See the definition of SPWRBK_CHAN_TIME_CODE structure below.

typedef struct _SPWRBK_CHAN_TIME_CODE {
 UCHAR Time;
 UCHAR Flags;
 BOOLEAN New;
} SPWRBK_CHAN_TIME_CODE, *PSPWRBK_CHAN_TIME_CODE;

IOCTL_SPWRBK_CHAN_GET_LINK_STATUS
Function: Reads and returns various quantities related to the performance of the
channel’s SpaceWire link.
Input: None
Output: SPWRBK_CHAN_LINK_STATUS structure
Notes: Link status values include the number of outstanding FCTs authorized by the
receiver, the number of data characters the transmitter is allowed to send as authorized
by the remote node’s receiver and the current timecode count received by this channel.
This register is intended for test and debug only, not for normal operation.

typedef struct _SPWR_CHAN_LINK_STATUS {
 UCHAR FctCount;
 UCHAR TxCredit;
 UCHAR TimeData;
} SPWR_CHAN_LINK_STATUS, *PSPWR_CHAN_LINK_STATUS;

 Embedded Solutions Page 17 of 19

IOCTL_SPWRBK_CHAN_SET_RPKT_LEN_AFL_LVL
Function: Set a channel's RX packet length FIFO almost full level.
Input: Value of received packet length FIFO almost full level (unsigned short integer)
Output: None
Notes: Due to extended data storage capability, the packet-length FIFO size would
sometimes be inadequate to hold the number of packet lengths that were received. To
prevent this from happening, the packet-length FIFO almost full signal was added to the
flow-control calculation. This register is used to set when this effect occurs.

IOCTL_SPWRBK_CHAN_GET_RPKT_LEN_AFL_LVL
Function: Read and return a channel's RX packet length FIFO almost full level.
Input: None
Output: Value of received packet length FIFO almost full level (unsigned short integer)
Notes: Returns the value set in the previous call.

 Embedded Solutions Page 18 of 19

Write

SpaceWire-BK DMA data is written to the referenced I/O channel device using the write
command. Writes are executed using the Windows function WriteFile() and passing in
the handle to the I/O channel device opened with CreateFile(), a pointer to a pre-
allocated buffer containing the data to be written, an unsigned long integer that
represents the size of that buffer in bytes, a pointer to an unsigned long integer to
contain the number of bytes actually written, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

Read
SpaceWire-BK DMA data is read from the referenced I/O channel device using the read
command. Reads are executed using the Windows function ReadFile() and passing in
the handle to the I/O channel device opened with CreateFile(), a pointer to a pre-
allocated buffer that will contain the data read, an unsigned long integer that represents
the size of that buffer in bytes, a pointer to an unsigned long integer to contain the
number of bytes actually read, and a pointer to an optional Overlapped structure for
performing asynchronous IO.

 Embedded Solutions Page 19 of 19

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and options.
https://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing, and in most cases it will be “cockpit
error” rather than an error with the driver. When you are sure or at least willing to pay to
have someone help then call or e-mail and arrange to work with an engineer. We will
work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois, Suite C Santa Cruz, CA 95060
(831) 457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

