
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

PC104p-BiSerial-VI-Ba14

Windows Software Manual

Driver Documentation

Developed with Windows Driver Foundation Ver1.9

Revision A1
10-2019-01

 Embedded Solutions Page 2

PC104pBis6Ba14
WDF Device Drivers for the
PC104p-BiSerial-VI Ba14

Dynamic Engineering

150 DuBois, Suite C

Santa Cruz, CA 95060

(831) 457-8891

FAX: (831) 457-4793

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and
the recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor
its contents revealed in any manner or to any person except to
meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves
the right to make improvements or changes in the product
described in this document at any time and without notice.
Furthermore, Dynamic Engineering assumes no liability arising
out of the application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without
the express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with PCI-104
modules and compatible user-provided equipment. Connection
of incompatible hardware is likely to cause serious damage.

©2019 by Dynamic Engineering.

Trademarks and registered trademarks are owned by their respective
manufactures.
Manual Revision A. Revised April 11, 2019.

 Embedded Solutions Page 3

INTRODUCTION 4

DRIVER INSTALLATION 5

Windows 7 Installation 5

IO Controls 6
IOCTL_BA14_BASE_GET_INFO 7
IOCTL_BA14_BASE_SET_CONFIG 7
IOCTL_BA14_BASE_GET_CONFIG 7
IOCTL_BA14_BASE_GET_STATUS 8
IOCTL_BA14_BASE_SET_DIR_TERM 8
IOCTL_BA14_BASE_GET_DIR_TERM 8
IOCTL_BA14_BASE_SET_IO_CONFIG 9
IOCTL_BA14_BASE_GET_IO_CONFIG 9
IOCTL_BA14_BASE_READ_IO_DATA 9
IOCTL_BA14_BASE_REGISTER_EVENT 10
IOCTL_BA14_BASE_ENABLE_INTERRUPT 10
IOCTL_BA14_BASE_DISABLE_INTERRUPT 10
IOCTL_BA14_BASE_FORCE_INTERRUPT 10
IOCTL_BA14_BASE_GET_ISR_STATUS 11
IOCTL_BA14_CHAN_GET_INFO 11
IOCTL_BA14_CHAN_SET_CONFIG 11
IOCTL_BA14_CHAN_GET_CONFIG 11
IOCTL_BA14_CHAN_RESET_FIFOS 12
IOCTL_BA14_CHAN_GET_STATUS 12
IOCTL_BA14_CHAN_SET_FIFO_LEVELS 12
IOCTL_BA14_CHAN_GET_FIFO_LEVELS 12
IOCTL_BA14_CHAN_WRITE_FIFO 13
IOCTL_BA14_CHAN_READ_FIFO 13
IOCTL_BA14_CHAN_GET_FIFO_COUNTS 13
IOCTL_BA14_CHAN_REGISTER_EVENT 13
IOCTL_BA14_CHAN_ENABLE_INTERRUPT 14

IOCTL_BA14_CHAN_DISABLE_INTERRUPT 14
IOCTL_BA14_CHAN_FORCE_INTERRUPT 14
IOCTL_BA14_CHAN_GET_ISR_STATUS 14

Write 15

Read 15

WARRANTY AND REPAIR 16

Service Policy 16
Support 16

For Service Contact: 16

Table of Contents

 Embedded Solutions Page 4

Introduction
The PC104p-BiSerial-VI-BA14 driver was developed with the Windows Driver
Foundation version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode
Driver Framework (KMDF). It was developed using 64 bit Windows operating
system with an Intel Core i7 Processor, using a Dynamic Engineering
PCIBPC104pET carrier. PC104p-Bis3-BA14 and the PC104p-Bis6-BA14 use
the same driver.

The PC104p-BiSerial-VI board has a Spartan6-75 Xilinx FPGA to implement the
PCI interface, FIFO’s and protocol control and status for four serial channels.
Each channel has two 8k x 32-bit data FIFOs for data transmission and
reception.

UserAp is a stand-alone code set with a simple and powerful menu plus a series
of tests that can be run on the installed hardware. Each of the tests execute
calls to the driver, pass parameters and structures, and get results back. With
the sequence of calls demonstrated, the functions of the hardware are utilized
for loop-back testing. The software is used for manufacturing test at Dynamic
Engineering. The test software can be ported to your application to provide a
running start. The register tests are simple and will quickly demonstrate the end-
to-end operation of your application making calls to the driver and interacting
with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a
failure occurs and stop or to continue, to program a set number of loops to
execute and more. The user can add tests to the provided test suite to try out
application ideas before committing to your system configuration. In many cases
the test configuration will allow faster debugging in a more controlled
environment before integrating with the rest of the system.

When the PC104p-BiSerial-VI-Ba14 is recognized by the PCI bus configuration
utility it will start the ba14 driver to allow communication with the device. IO
Control calls (IOCTLs) are used to configure the board and read status.

Note
This documentation will provide information about all calls made to the drivers,
and how the drivers interact with the device for each of these calls. For more
detailed information on the hardware implementation, refer to the PC104p-
BiSerial-VI-Ba14 user manual (also referred to as the hardware manual).

 Embedded Solutions Page 5

Driver Installation
There are several files provided in each driver package. These files include
Ba14BasePublic.h, Ba14ChanPublic.h, Ba14Base.inf, Ba14Chan.inf,
ba14base.cat, ba14chan.cat, Ba14Base.sys, Ba14Chan.sys, and
WdfCoInstaller01009.dll.

Ba14BasePublic.h and Ba14ChanPublic.h are the C header files that define the
Application Program Interface (API) for the Pc104pBis6Ba4 driver. These files
are required at compile time by any application that wishes to interface with the
drivers, but is not needed for driver installation.

Windows 7 Installation

Copy Ba14Base.inf, Ba14Chan.inf, ba14base.cat, ba14chan.cat, Ba14Base.sys,
Ba14Chan.sys, and WdfCoInstaller01009.dll (Win7 version) to a CD or USB
memory device as preferred.

With the PC104p BA14 hardware installed, power-on the PCI host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an Other PCI Bridge Device*.
• Right-click on the Other PCI Bridge Device and select Update Driver
Software.
• Insert the disk or memory device prepared above in the desired drive.
• Select Browse my computer for driver software.
• Select Let me pick from a list of device drivers on my computer.
• Select Next.
• Select Have Disk and enter the path to the device prepared above.
• Select Next.
• Select Close to close the update window.
• Follow the same steps to install the channel drivers.

The system should now display the Pc104pBis6Ba14 PCI adapter in the Device
Manager.

* If the Other PCI Bridge Device is not displayed, click on the Scan for
hardware changes icon on the tool-bar.

 Embedded Solutions Page 6

Driver Startup
Once the driver has been installed it will start automatically when the system
recognizes the hardware.

A handle can be opened to a specific board by using the CreateFile() function
call and passing in the device name obtained from the system.

The interface to the device is identified using globally unique identifiers (GUID),
which are defined in Ba14BasePublic.h and Ba14ChanPublic.c. See main.c in
the Pc104pBis6Ba14UserApp project for an example of how to acquire a handle
to the device.

The main file provided is designed to work with our test menu and includes user
interaction steps to allow the user to select which board is being tested in a
multiple board environment. The integrator can hardcode for single board
systems or use an automatic loop to operate in multiple board systems without
using user interaction. For multiple user systems it is suggested that the board
number is associated with a switch setting so the calls can be associated with a
particular board from a physical point of view.

IO Controls
The drivers use IO Control calls (IOCTLs) to configure the device. IOCTLs refer
to a single Device Object, which controls a single board or I/O channel. IOCTLs
are called using the Win32 function DeviceIoControl(), and passing in the handle
to the device opened with CreateFile() (see above). IOCTLs generally have
input parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header
file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
structure
); // used for asynchronous I/O

 Embedded Solutions Page 7

The IOCTLs defined for the PC104pBis6Ba14 driver are described below:

IOCTL_BA14_BASE_GET_INFO
Function: Returns the current driver version and instance number.
Input: none
Output: BA14_BASE_DRIVER_DEVICE_INFO structure
Notes: This call does not access the hardware, only driver parameters. See the
definition of BA14_BASE_DRIVER_DEVICE_INFO below. Refer to the PrintInfo
function found in the PrintInfo.c file in the UserApp for an example of use.

typedef struct _BA14_BASE_DRIVER_DEVICE_INFO
{
 UCHAR DriverVersion;
 UCHAR RevMajor;
 UCHAR SwitchValue;
 ULONG InstanceNumber;
} BA14_BASE_DRIVER_DEVICE_INFO, *PBA14_BASE_DRIVER_DEVICE_INFO;

IOCTL_BA14_BASE_SET_CONFIG
Function: Sets the value for the Base Control Register
Input: BA14_BASE_CONFIG structure
Output: none
Notes: In current version of device only the Sel_Disable bit is used. Bit
definitions can be found in the ‘_BASE’ section under Register Definitions in the
Hardware manual.

IOCTL_BA14_BASE_GET_CONFIG
Function: Returns the state of the Base Control register.
Input: none
Output: BA14_BASE_CONFIG structure
Notes: Bit definitions can be found in the ‘_BASE’ section under Register
Definitions in the Hardware manual.

 Embedded Solutions Page 8

IOCTL_BA14_BASE_GET_STATUS
Function: Returns the base status.
Input: None
Output: Status register value (unsigned long integer)
Notes: Returns the base status information for a given board obtained from the
‘Status’ register. Bit definitions can be found in the ‘Status’ section under
Register Definitions in the Hardware manual.

IOCTL_BA14_BASE_SET_DIR_TERM
Function: Sets the direction (input or output) and termination (off or on) of the 16
RS-485 I/O lines.
Input: BA14_BASE_DIR_TERM structure
Output: None
Notes: The bits in each of the structure fields operate on the respective I/O line
i.e. if direction bit 0 is a one, I/O line 0 is an output; if termination bit 6 is a one,
I/O line 6 is terminated etc. See the definition of BA14_BASE_DIR_TERM
below. Bit definitions can be found in the ‘_DIR_TERM’ section under Register
Definitions in the Hardware manual. Refer to the data_cntl_test function found in
the reg_test.c file in the UserApp for an example of use.

typedef struct _BA14_BASE_DIR_TERM
{
 USHORT Direction;
 USHORT Termination;
} BA14_BASE_DIR_TERM, *PBA14_BASE_DIR_TERM;

IOCTL_BA14_BASE_GET_DIR_TERM
Function: Returns the direction and termination of the 16 RS-485 I/O lines.
Input: None
Output: BA14_BASE_DIR_TERM structure
Notes: Bit definitions can be found in the ‘_DIR_TERM’ section under Register
Definitions in the Hardware manual. Refer to the data_cntl_test function found in
the reg_test.c file in the UserApp for an example of use.

 Embedded Solutions Page 9

IOCTL_BA14_BASE_SET_IO_CONFIG
Function: Sets the source and data value of the 16 RS-485 output lines.
Input: BA14_BASE_485_DATA_CNTL structure
Output: None
Notes: The bits in each of the structure fields operate on the respective I/O line to
specify the data when that line is configured as an output. When a bit in the Select field
is a one, the data source for the I/O line is the register loaded from the Data field.
Otherwise the data source is the transmit I/O state machine. Bit definitions can be
found in the ‘_PARDAT_485’ and ‘_PARCNTL’ sections under Register
Definitions in the Hardware manual. Refer to the data_cntl_test function found in
the reg_test.c file in the UserApp for an example of use.

typedef struct _BA14_BASE_485_DATA_CNTL
{
 USHORT Data;
 USHORT Select;
} BA14_BASE_485_DATA_CNTL, *PBA14_BASE_485_DATA_CNTL;

IOCTL_BA14_BASE_GET_IO_CONFIG
Function: Returns the source and data value of the 16 RS-485 output lines.
Input: None
Output: BA14_BASE_485_DATA_CNTL structure
Notes: Bit definitions can be found in the ‘_PARDAT_485’ and ‘_PARCNTL’
sections under Register Definitions in the Hardware manual. Refer to the
data_cntl_test function found in the reg_test.c file in the UserApp for an example
of use.

IOCTL_BA14_BASE_READ_IO_DATA
Function: Returns the data values on the 16 RS-485 input lines..
Input: None
Output: Unsigned long integer
Notes:

 Embedded Solutions Page 10

IOCTL_BA14_BASE_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned from that call as the
input to this IOCTL. The driver then obtains a system pointer to the event and signals the event when an interrupt
is serviced. The user interrupt service routine waits on this event, allowing it to respond to the interrupt. When it
is desired to un-register the event, set the event handle input parameter to NULL. Refer to the interrupt
function found in the interrupt.c file in the UserApp for an example of use.

IOCTL_BA14_BASE_ENABLE_INTERRUPT

Function: Enables the interrupts for.
Input: None
Output: None
Notes: Sets the interrupt enable. This IOCTL is used in the user interrupt processing function to begin interrupt
processing or to re-enable the interrupts after they were disabled in the driver interrupt service routine.
Refer to the interrupt function found in the interrupt.c file in the UserApp for an
example of use.

IOCTL_BA14_BASE_DISABLE_INTERRUPT

Function: Disables the interrupt for given channel.
Input: None
Output: None
Notes: Clears the interrupt enable for. This IOCTL is used when interrupt processing is no longer desired.
Refer to the interrupt function found in the interrupt.c file in the UserApp for an
example of use.

IOCTL_BA14_BASE_FORCE_INTERRUPT

Function: Causes a system interrupt to occur for given channel.
Input: None
Output: None
Notes: Causes a interrupt to be asserted on the PCI bus provided the interrupts are enabled. This IOCTL is used
for development, to test interrupt processing. Refer to the interrupt function found in the
interrupt.c file in the UserApp for an example of use.

 Embedded Solutions Page 11

IOCTL_BA14_BASE_GET_ISR_STATUS

Function: Returns the interrupt status read in the last ISR.
Input: none
Output: Unsigned long integer
Notes: The status contains the status and control bits of the Status register read in the last ISR execution.
Refer to the interrupt function found in the interrupt.c file in the UserApp for an
example of use.

IOCTL_BA14_CHAN_GET_INFO
Function: Returns the Driver version and Instance number.
Input: None
Output: BA14_CHAN_CONT structure
Notes: Bit definitions can be found in the ‘_BASE 0’ section under Register
Definitions in the Hardware manual. Refer to the ext_LB function found in the
fifo_test.c file in the UserApp for an example of use.

IOCTL_BA14_CHAN_SET_CONFIG
Function: Sets the channel configuration of the board.
Input: BA14_CHAN_CONT structure
Output: None
Notes: See the definition of BA14_CHAN_CONT below. Bit definitions can be
found in the ‘_BASE 0’ section under Register Definitions in the Hardware
manual. Refer to the ext_LB function found in the fifo_test.c file in the UserApp
for an example of use.

typedef struct _BA14_CHAN_CONT
{
 BOOLEAN Fifo_Bypass;
 BOOLEAN Tx_Enable;
 BOOLEAN Rx_Enable;
 BOOLEAN Tx_Clr_Dis;
 CHAN_SELECT ChanSelect;
} BA14_CHAN_CONT, *PBA14_CHAN_CONT;

IOCTL_BA14_CHAN_GET_CONFIG
Function: Returns the channel configuration of the board.
Input: None
Output: BA14_CHAN_CONT structure
Notes: Bit definitions can be found in the ‘_BASE 0’ section under Register
Definitions in the Hardware manual. Refer to the ext_LB function found in the
fifo_test.c file in the UserApp for an example of use.

 Embedded Solutions Page 12

IOCTL_BA14_CHAN_RESET_FIFOS
Function: Resets both the transmit and receive FIFOs.
Input: None
Output: None
Notes:

IOCTL_BA14_CHAN_GET_STATUS
Function: Returns the channel status.
Input: None
Output: Chan status value (unsigned long integer)
Notes: Returns Channel Interrupt Status information for a given board obtained
from the ‘ChanStatus’ register. Bit definitions can be found in the ‘_INT 0’ section
under Register Definitions in the Hardware manual.

IOCTL_BA14_CHAN_SET_FIFO_LEVELS
Function: Sets receive almost full and transmit almost empty FIFO levels.
Input: BA14_FIFO_LEVELS structure
Output: None
Notes: Sets the almost full level for the receive FIFO; the number of words
below full, above which the PAF flag is asserted. Sets the almost empty level for
the transmit FIFO; the number of words above empty, below which the PAE flag
is asserted. Bit definitions can be found in the ‘_TXAMTC’ and the ‘_RXAFC’
sections under Register Definitions in the Hardware manual. Refer to the ext_LB
function found in the fifo_test.c file in the UserApp for an example of use.

typedef struct _BA14_CHAN_FIFO_LEVELS
{
 USHORT AlmostFull;
 USHORT AlmostEmpty;
} BA14_CHAN_FIFO_LEVELS, *PBA14_CHAN_FIFO_LEVELS;

IOCTL_BA14_CHAN_GET_FIFO_LEVELS
Function: Returns receive almost full and transmit almost empty FIFO levels.
Input: Channel (unsigned character)
Output: FIFO_LEVELS structure
Notes: Returns the almost full level for the receive FIFO and the almost empty
level for the transmit FIFO. Bit definitions can be found in the ‘_TXAMTC’ and
the ‘_RXAFC’ sections under Register Definitions in the Hardware manual. Refer
to the ext_LB function found in the fifo_test.c file in the UserApp for an example
of use.

 Embedded Solutions Page 13

IOCTL_BA14_CHAN_WRITE_FIFO
Function: Write one data word into the transmit FIFO.
Input: Unsigned long integer
Output: None
Notes: Loads a single transmit data word into the transmit FIFO. Refer to the
ext_LB function found in the fifo_test.c file in the UserApp for an example of use.

IOCTL_BA14_CHAN_READ_FIFO
Function: Reads one data word from the receive FIFO.
Input: None
Output: Unsigned long integer
Notes: Reads a single receive data word from the receive FIFO. Refer to the
ext_LB function found in the fifo_test.c file in the UserApp for an example of use.

IOCTL_BA14_CHAN_GET_FIFO_COUNTS
Function: Returns the number of words stored in the TX and RX FIFOs.
Input: None
Output: BA14_CHAN_FIFO_COUNTS
Notes: Returns the FIFO counts. See the definition of
BA14_CHAN_FIFO_COUNTS below. Register definition can be found in the
‘ChanFifoCnt’ section under Register Definitions in the Hardware manual.

typedef struct _BA14_CHAN_FIFO_COUNTS
{
 USHORT TxCount;
 USHORT RxCount;
} BA14_CHAN_FIFO_COUNTS, *PBA14_CHAN_FIFO_COUNTS;

IOCTL_BA14_CHAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned from that call as the
input to this IOCTL. The driver then obtains a system pointer to the event and signals the event when an interrupt
is serviced. The user interrupt service routine waits on this event, allowing it to respond to the interrupt. When it
is desired to un-register the event, set the event handle input parameter to NULL. Refer to the
interrupt_chan function found in the interrupt.c file in the UserApp for an example
of use.

 Embedded Solutions Page 14

IOCTL_BA14_CHAN_ENABLE_INTERRUPT

Function: Enables the interrupts for given channel.
Input: None
Output: None
Notes: Sets the channel interrupt enable for given channel. This IOCTL is used in the user interrupt processing
function to begin interrupt processing or to re-enable the interrupts after they were disabled in the driver
interrupt service routine. The Base Interrupt must also be enabled for channel interrupts to occur. Refer to
the interrupt_chan function found in the interrupt.c file in the UserApp for an
example of use.

IOCTL_BA14_CHAN_DISABLE_INTERRUPT

Function: Disables the interrupt for given channel.
Input: None
Output: None
Notes: Clears the channel interrupt enable for given channel. This IOCTL is used when interrupt processing is no
longer desired. Refer to the interrupt_chan function found in the interrupt.c file in the
UserApp for an example of use.

IOCTL_BA14_CHAN_FORCE_INTERRUPT

Function: Causes a system interrupt to occur for given channel.
Input: None
Output: None
Notes: Causes a channel interrupt to be asserted on the PCI bus provided the interrupts are enabled. This IOCTL
is used for development, to test interrupt processing. Refer to the interrupt_chan function found
in the interrupt.c file in the UserApp for an example of use.

IOCTL_BA14_CHAN_GET_ISR_STATUS

Function: Returns the interrupt status read in the last ISR.
Input: none
Output: Unsigned long integer
Notes: The status contains the status and control bits of the Chan Status register read in the last ISR execution.
Refer to the interrupt_chan function found in the interrupt.c file in the UserApp
for an example of use.

 Embedded Solutions Page 15

Write

PC104p-BiSerial-VI DMA data is written to the device using the write command.
Writes are executed using the Win32 function WriteFile() and passing in the
handle to the device opened with CreateFile(), a pointer to a pre-allocated buffer
containing the data to be written, an unsigned long integer that represents the
size of that buffer in bytes, a pointer to an unsigned long integer to contain the
number of bytes actually written, and a pointer to an optional Overlapped
structure for performing asynchronous IO.

Read

PC104p-BiSerial-VI DMA data is read from the device using the read command.
Reads are executed using the Win32 function ReadFile() and passing in the
handle to the device opened with CreateFile(), a pointer to a pre-allocated buffer
that will contain the data read, an unsigned long integer that represents the size
of that buffer in bytes, a pointer to an unsigned long integer to contain the
number of bytes actually read, and a pointer to an optional Overlapped structure
for performing asynchronous IO.

 Embedded Solutions Page 16

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered
and options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is
at fault. The driver has gone through extensive testing, and in most cases it will
be “cockpit error” rather than an error with the driver. When you are sure or at
least willing to pay to have someone help then call or e-mail and arrange to work
with an engineer. We will work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with
the documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With
a contract in place Dynamic Engineers can help with system debugging, special
software development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

