
DYNAMIC ENGINEERING
150 DuBois St., Suite C Santa Cruz, CA 95060

831-457-8891 Fax 831-457-4793
http://www.dyneng.com

sales@dyneng.com
Est. 1988

IpTest

Windows 10 WDF Driver
Documentation

Developed with Windows Driver Foundation

Ver1.19

Manual Revision: 01p1

 Embedded Solutions Page 2 of 16

IpTest WDF Device Driver for the
IP-Parallel-HV-Test IP Module

Dynamic Engineering
150 DuBois St., Suite C
Santa Cruz, CA 95060
831-457-8891
FAX: 831-457-4793

This document contains information of proprietary interest to
Dynamic Engineering. It has been supplied in confidence and the
recipient, by accepting this material, agrees that the subject
matter will not be copied or reproduced, in whole or in part, nor its
contents revealed in any manner or to any person except to meet
the purpose for which it was delivered.

Dynamic Engineering has made every effort to ensure that this
manual is accurate and complete. Still, the company reserves the
right to make improvements or changes in the product described
in this document at any time and without notice. Furthermore,
Dynamic Engineering assumes no liability arising out of the
application or use of the device described herein.

The electronic equipment described herein generates, uses, and
can radiate radio frequency energy. Operation of this equipment
in a residential area is likely to cause radio interference, in which
case the user, at his own expense, will be required to take
whatever measures may be required to correct the interference.

Dynamic Engineering’s products are not authorized for use as
critical components in life support devices or systems without the
express written approval of the president of Dynamic
Engineering.

This product has been designed to operate with IP Module
carriers and compatible user-provided equipment. Connection of
incompatible hardware is likely to cause serious damage.

©2019 by Dynamic Engineering.
Trademarks and registered trademarks are owned by their
respective manufactures.

 Embedded Solutions Page 3 of 16

Introduction 5

Note 5

Driver Installation 5

Windows 10 Installation 6

Driver Startup 6

IO Controls 7
IOCTL_IP_TEST_GET_INFO 7
IOCTL_IP_TEST_SET_IP_CONTROL 8
IOCTL_IP_TEST_GET_IP_STATE 8
IOCTL_IP_TEST_SET_BASE_CONFIG 9
IOCTL_IP_TEST_GET_BASE_CONFIG 9
IOCTL_IP_TEST_SET_TTL_DATA 9
IOCTL_IP_TEST_GET_TTL_DATA 9
IOCTL_IP_TEST_SET_TTL_INT_EN 10
IOCTL_IP_TEST_GET_TTL_INT_EN 10
IOCTL_IP_TEST_SET_TTL_EDGE_LEVEL 10
IOCTL_IP_TEST_GET_TTL_EDGE_LEVEL 10
IOCTL_IP_TEST_SET_TTL_POLARITY 10
IOCTL_IP_TEST_GET_TTL_POLARITY 11
IOCTL_IP_TEST_READ_DIRECT 11
IOCTL_IP_TEST_READ_FILTERED 11
IOCTL_IP_TEST_SET_WR_MEM_OFFSET 11
IOCTL_IP_TEST_SET_RD_MEM_OFFSET 11
IOCTL_IP_TEST_GET_MEM_ADDRESS 12
IOCTL_IP_TEST_REGISTER_EVENT 12
IOCTL_IP_TEST_ENABLE_INTERRUPT 12
IOCTL_IP_TEST_DISABLE_INTERRUPT 12
IOCTL_IP_TEST_FORCE_INTERRUPT 13
IOCTL_IP_TEST_SET_VECTOR 13
IOCTL_IP_TEST_GET_VECTOR 13
IOCTL_IP_TEST_GET_ISR_STATUS 13
IOCTL_IP_TEST_PUT_MEM_DATA 14
IOCTL_IP_TEST_GET_MEM_DATA 14

Write 15

Table of Contents

 Embedded Solutions Page 4 of 16

Read 15

WARRANTY AND REPAIR 16

Service Policy 16
Support 16

For Service Contact: 16

 Embedded Solutions Page 5 of 16

Introduction
The IpTest driver is a Windows device driver for the [IP-Parallel-HV-Test] IP-Test
Industry-pack (IP) module from Dynamic Engineering. This driver was developed with
the Windows Driver Foundation version 1.19 (WDF) from Microsoft, specifically the
Kernel-Mode Driver Framework (KMDF).

The IP-HV-TEST module is used to test IP carriers developed by Dynamic Engineering.
IP-HV-TEST is an orderable configuration of IP-Parallel-HV. When combined with the
carrier driver IO, INT, ID and MEM space access requests are supported including up to
64-bit MEM space accesses when running a 64-bit OS and installed in a carrier that
supports 64-bit accesses.

When the IP carrier driver is started it will enumerate the carrier’s IP bus by reading the
ID proms of installed IPs. If the IP module driver has been previously installed, it will be
loaded and a Device Object will be created for each installed IP. A separate handle to
each IP module can be obtained using CreateFile() calls. IO Control calls (IOCTLs) are
used to configure the IP module and read the module’s status. WriteFile() and
ReadFile() calls are used to move blocks of data in and out of the IP module.

Note
This documentation will provide information about all calls made to the driver, and how
the driver interacts with the hardware for each of these calls. For more detailed
information on the hardware implementation, refer to the IP-Test device user manual
(also referred to as the hardware manual).

Driver Installation
There are several files provided in each driver package. These files include IpTest.sys,
IpTestPublic.h, IpPublic.h, IpTest.inf and iptest.cat.

IpTestPublic.h and IpPublic.h are C header files that define the Application Program
Interface (API) to the driver. These files are required at compile time by any application
that wishes to interface with the driver, but are not needed for driver installation.

Note: Other IP module drivers are included in the package since they were all signed
together and must be present to validate the digital signature. These other IP module
driver files must be present when the IpTest driver is installed, to verify the digital
signature in IpDevices.cat, otherwise they can be ignored.

Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

 Embedded Solutions Page 6 of 16

Windows 10 Installation
Copy IpTest.inf, iptest.cat, IpTest.sys and the other IP module drivers to a removable
memory device or other accessible location as preferred.

With the IP hardware installed, power-on the host computer.
• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each IP module installed on the IP

carrier. The label for a module installed in the first slot of the first PCIe3IP carrier
would read PcieCar0 IP Slot A*.

• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The IpTest device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

This process must be completed for each new IP device that is installed.

* If no IP devices are displayed, check to see that an IP Carrier Device is present in the
Device Manager and click on the Scan for hardware changes icon on the tool-bar or
select it in the Action menu.

IpPublic and IpTestPublic.h are ‘C’ header files that define the Application Program
Interface (API) to the driver. These files are required at compile time by any application
that wishes to interface with the IpTest driver, but they are not needed for driver
installation. The device interface identifier (GUID) for the IpTest driver is defined in
IpTestPublic.h.

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific board by using the CreateFile() function call and
passing in the device name obtained from the system.

The interface to the device is identified using a globally unique identifier (GUID), which
is defined in IpTestPublic.h.

The main.c file provided with the user test software can be used as an example to show
how to obtain a handle to an IpTest device.

 Embedded Solutions Page 7 of 16

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single module. IOCTLs are called using the
Win32 function DeviceIoControl() (see below), and passing in the handle to the device
opened with CreateFile() (see above). IOCTLs generally have input parameters, output
parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

The IOCTLs defined for the IpTest driver are described below:

IOCTL_IP_TEST_GET_INFO
Function: Returns the driver and firmware revisions, module instance number and location
and other information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only stored driver parameters.
NewIpCntl indicates that the module’s carrier has expanded slot control capabilities.
See the definition of DRIVER_IP_DEVICE_INFO below.

 // Driver version and instance/slot information
typedef struct _DRIVER_IP_DEVICE_INFO {
 USHORT DriverRev;
 USHORT FirmwareRev;
 USHORT InstanceNum;
 UCHAR CarrierSwitch; // 0..0xFF
 UCHAR CarrierSlotNum; // 0..7 -> IP slots A, B, C, D, E, F, G or H
 BOOLEAN NewIpCntl; // New IP slot control bits
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;
	

 Embedded Solutions Page 8 of 16

IOCTL_IP_TEST_SET_IP_CONTROL
Function: Sets various control parameters for the IP slot the module is installed in.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Controls the IP clock speed, interrupt enables and data manipulation options for
the IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.
For more information refer to the IP carrier hardware manual.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

IOCTL_IP_TEST_GET_IP_STATE
Function: Returns control/status information for the IP slot the module is installed in.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control parameters set in the previous call as well as status
information for the IP slot that the board occupies. See the definition of
IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;
} IP_SLOT_STATE, *PIP_SLOT_STATE;

 Embedded Solutions Page 9 of 16

IOCTL_IP_TEST_SET_BASE_CONFIG
Function: Sets configuration parameters in the IP base control register.
Input: IP_TEST_BASE_CONFIG structure
Output: None
Notes: Controls the output data latch behavior. The output data latch can be set to
enable, disable or auto. When in auto the outputs from all data registers are enabled
onto the output bus simultaneously after each data update call. See the definition of
OUT_SEL and IP_TEST_BASE_CONFIG below.

typedef enum _OUT_SEL {
 DISABLE,
 ENABLE,
 AUTO
} OUT_SEL, *POUT_SEL;

 // Output control
typedef struct _IP_TEST_BASE_CONFIG {
 OUT_SEL Outen;
} IP_TEST_BASE_CONFIG, *PIP_TEST_BASE_CONFIG;

IOCTL_IP_TEST_GET_BASE_CONFIG
Function: Returns the configuration of the IP base control register.
Input: None
Output: IP_TEST_BASE_CONFIG structure
Notes: Returns the values set in the previous call.

IOCTL_IP_TEST_SET_TTL_DATA
Function: Sets the value of the 24 TTL data outputs on the board.
Input: Unsigned long integer
Output: None
Notes: The value of each of the 24 TTL data output bits is determined by the
corresponding bit in the input word for this call. The TTL lines of the IP-Test module are
equipped with open drain drivers with pull-ups to achieve a TTL high voltage level.
When the drivers are configured to output a low level the external line will be driven low,
but when configured to output a high level, the value of the external line will follow the
level of the externally connected node.

IOCTL_IP_TEST_GET_TTL_DATA
Function: Returns the state of the bits in the output data register.
Input: None
Output: Unsigned long integer
Notes: The value returned depends only on the value that was written by
IOCTL_IP_TEST_SET_TTL_DATA, not on the voltage level of the external line. To
return the line voltage levels use IOCTL_IP_TEST_READ_DIRECT.

 Embedded Solutions Page 10 of 16

IOCTL_IP_TEST_SET_TTL_INT_EN

Function: Selects which TTL inputs are possibly latched and can cause an interrupt.
Input: Unsigned long integer
Output: None
Notes: This call defines the mask of which of the 24 TTL input lines will be enabled to
cause an interrupt if the specified polarity and edge/level conditions are met. A one in a
certain bit positions enables the respective input line to be considered. A zero
eliminates that line as a candidate for interrupt generation.

IOCTL_IP_TEST_GET_TTL_INT_EN
Function: Returns the interrupt enable values set in the previous call.
Input: None
Output: Unsigned long integer
Notes: The value returned will be equal to the value that was written by the last
IOCTL_IP_TEST_SET_TTL_INT_EN call.

IOCTL_IP_TEST_SET_TTL_EDGE_LEVEL
Function: Selects whether a TTL input is edge-sensitive or level sensitive.
Input: Unsigned long integer
Output: None
Notes: Determines whether the interrupt for each of the enabled TTL input lines
responds to a static logic level or a transition between levels. A one in a certain bit
positions configures the respective input line to be edge-sensitive. A zero configures
the line to be level-sensitive. Which level or edge the latch responds to is determined
by the IOCTL_IP_TEST_SET_TTL_POLARITY call.

IOCTL_IP_TEST_GET_TTL_EDGE_LEVEL
Function: Returns the interrupt edge/level values set in the previous call.
Input: None
Output: Unsigned long integer
Notes: The value returned will be equal to the value that was written by the last
IOCTL_IP_TEST_SET_TTL_EDGE_LEVEL call.

IOCTL_IP_TEST_SET_TTL_POLARITY
Function: Selects whether a TTL input is active high or active low.
Input: Unsigned long integer
Output: None
Notes: Determines the polarity of the level or edge to which the corresponding input line
will respond. A one in a certain bit positions configures the respective input line to
respond to a high level or a rising edge depending on the state of the corresponding
edge/level bit. A zero configures the line to respond to a low level or a falling edge.

 Embedded Solutions Page 11 of 16

IOCTL_IP_TEST_GET_TTL_POLARITY
Function: Returns the interrupt polarity values set in the previous call.
Input: None
Output: Unsigned long integer
Notes: The value returned will be equal to the value that was written by the last
IOCTL_IP_TEST_SET_TTL_POLARITY call.

IOCTL_IP_TEST_READ_DIRECT
Function: Reads the input data bus directly.
Input: None
Output: Unsigned long integer
Notes: This call reads the raw real-time input data from the TTL input lines and returns
an unsigned long integer corresponding to that value.

IOCTL_IP_TEST_READ_FILTERED
Function: Reads the state of the input data latches.
Input: None
Output: Unsigned long integer
Notes: This call reads the contents of the interrupt latches after the enable mask,
edge/level, and polarity bits have been applied. A one means that the specified
conditions for that bit have been met. The values are returned in an unsigned long
integer. The latched bits are automatically cleared after being read by this call.

IOCTL_IP_TEST_SET_WR_MEM_OFFSET
Function: Specifies the starting offset into the 4K byte RAM for multi-word writes.
Input: Unsigned long integer
Output: None
Notes: This call should be run before a WriteFile() is performed the first time or if the
target RAM address has changed since the last time this call was made.

IOCTL_IP_TEST_SET_RD_MEM_OFFSET
Function: Specifies the starting offset into the 4K byte RAM for multi-word reads.
Input: Unsigned long integer
Output: None
Notes: This call should be run before a ReadFile() is performed the first time or if the
target RAM address has changed since the last time this call was made.

 Embedded Solutions Page 12 of 16

IOCTL_IP_TEST_GET_MEM_ADDRESS
Function: Returns the state of the 22 IP module address lines when the last MEM
select occurred.
Input: None
Output: Unsigned long integer
Notes: When the 8 Mbyte IP MEM space is accessed, the lower six address bits are
specified with the six IP address lines and the remaining upper 16 address bits are
written to the 16 IP data bits. The address bits are concatenated into a 22-bit address
that accesses the 4 Mbyte by 16-bit IP MEM space. The byte selects specify which
byte(s) are accessed. The 22-bit address is returned by this call for test purposes.

IOCTL_IP_TEST_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when an interrupt is serviced. The user interrupt service
routine waits on this event, allowing it to respond to the interrupt. In order to un-register
the event, set the event handle to NULL while making this call.

IOCTL_IP_TEST_ENABLE_INTERRUPT
Function: Sets the master interrupt enable.
Input: None
Output: None
Notes: Sets the master interrupt enable, leaving all other bit values in the base register
unchanged. This IOCTL is used in the user interrupt processing function to re-enable
the interrupts after they were disabled in the driver ISR. This allows the driver to set the
master interrupt enable without knowing the state of the other base configuration bits.

IOCTL_IP_TEST_DISABLE_INTERRUPT
Function: Clears the master interrupt enable.
Input: None
Output: None
Notes: Clears the master interrupt enable, leaving all other bit values in the base
register unchanged. This IOCTL is used when interrupt processing is no longer desired.

 Embedded Solutions Page 13 of 16

IOCTL_IP_TEST_FORCE_INTERRUPT
Function: Causes a system interrupt to occur.
Input: IP_TEST_INT_SEL structure
Output: None
Notes: Causes an interrupt to be asserted on the IP bus using either of the two IP
interrupt lines. This IOCTL is used for development, to test interrupt processing.

typedef struct _IP_TEST_INT_SEL {
 BOOLEAN IntSet0;
 BOOLEAN IntSet1;
} IP_TEST_INT_SEL, *PIP_TEST_INT_SEL;

IOCTL_IP_TEST_SET_VECTOR
Function: Sets the value of the interrupt vector.
Input: Unsigned character
Output: None
Notes: This value will be driven onto the low byte of the data bus in response to an
INT_SEL strobe, which is used in vectored interrupt cycles. This value will be read in
the interrupt service routine and stored for future reference. This call accesses the
register where that vector is stored.

IOCTL_IP_TEST_GET_VECTOR
Function: Returns the current interrupt vector value.
Input: None
Output: Unsigned character
Notes: This call accesses the register where the interrupt vector is stored so that the
vector value can be verified without generating an interrupt.

IOCTL_IP_TEST_GET_ISR_STATUS
Function: Returns the interrupt status and vector read in the last ISR.
Input: None
Output: IP_TEST_INT_STAT structure
Notes: The status contains the contents of the INT_STAT register read in the last ISR
execution. Also, if bit 12 is set, it indicates that a bus error occurred for this IP slot.

 // Interrupt status and vector
typedef struct _IP_TEST_INT_STAT {
 USHORT InterruptStatus;
 USHORT InterruptVector;
} IP_TEST_INT_STAT, *PIP_TEST_INT_STAT;
	

 Embedded Solutions Page 14 of 16

IOCTL_IP_TEST_PUT_MEM_DATA
Function: Writes a single 16-bit word to a specific address offset in the IP MEM space.
Input: IP_TEST_DATA_WRITE structure
Output: None
Notes: The address can be any value below 4,194,304 (0x400000) and the data can be
any 16-bit value. This address covers the entire 8 Mbyte IP MEM space and although
there is only a 4 Kbyte RAM implemented, the call succeeds for the entire IP MEM
space as if the entire 8 Mbyte memory was populated.

typedef struct _IP_TEST_DATA_WRITE {
 ULONG Address;
 USHORT Data;
} IP_TEST_DATA_WRITE, *PIP_TEST_DATA_WRITE;

IOCTL_IP_TEST_GET_MEM_DATA
Function: Returns the 16-bit data word read at the address offset.
Input: Address offset (unsigned long integer)
Output: Data (unsigned short integer)
Notes: This call reads the MEM space location at the input address offset and returns
the 16-bit data word. Reads above the 4 Kbyte address limit of the RAM that is actually
implemented will result in a bus error.

 Embedded Solutions Page 15 of 16

Write
Data can be written to the RAM using a WriteFile() call. The user supplies the device
handle, a pointer to the buffer containing the data, the number of bytes to write, a
pointer to a variable to store the amount of data actually transferred, and a pointer to an
optional Overlapped structure for performing asynchronous IO. The number of bytes
requested and the current write memory offset are checked to see how much data can
be written without overflowing the memory. The command is executed with successive
writes to the RAM. If the IP carrier is PCIe based and supports 64-bit writes, four
successive 16-bit writes will be made to the IP for each 64-bit PCIe access. If the
carrier is PCI based two 16-bit writes will be made to the IP for each 32-bit PCI access.

Read
Data can be read from the RAM using a ReadFile() call. The user supplies the device
handle, a pointer to the buffer that will contain the data, the number of bytes to read, a
pointer to a variable to store the amount of data actually transferred, and a pointer to an
optional Overlapped structure for performing asynchronous IO. The number of bytes
requested and the current read memory offset are checked to see how much data can
be read without going over the memory limit. The command is executed with
successive reads from the RAM. If the IP carrier is PCIe based and supports 64-bit
reads, four successive 16-bit reads will be made from the IP for each 64-bit PCIe
access. If the carrier is PCI based two 16-bit reads will be made from the IP for each
32-bit PCI access.

 Embedded Solutions Page 16 of 16

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing, and in most cases it will be “cockpit
error” rather than an error with the driver. When you are sure or at least willing to pay to
have someone help then call or e-mail and arrange to work with an engineer. We will
work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
831-457-4793 Fax
support@dyneng.com

All information provided is Copyright Dynamic Engineering

