
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793

http://www.dyneng.com
sales@dyneng.com

Est. 1988

IpCan,
BCan & PCan

Driver Documentation

WDF Driver Documentation
For the IP-CAN module

Developed with Windows Driver Foundation Ver1.9

Revision A
Corresponding Hardware: Revision C

10-2006-1103
Corresponding Firmware: Revision C1

http://www.dyneng.com/
mailto:dedra@dyneng.com

 Embedded Solutions Page 2 of 29

IpCan, BCan & PCan
WDF Device Drivers for the IP-CAN
2-Channel Controller Area Network
Interface IndustryPack® Module

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2008-2019 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revision A1. Revised 2/5/19

 Embedded Solutions Page 3 of 29

Introduction .. 5
Note ... 5
Driver Installation ... 6
Windows 7 Installation .. 7
Driver Startup ... 7
IO Controls ... 8

IOCTL_IP_CAN_GET_INFO ... 8
IOCTL_IP_CAN_SET_IP_CONTROL ... 9
IOCTL_IP_CAN_GET_IP_STATE ... 9
IOCTL_IP_CAN_GET_STATUS ... 10
IOCTL_IP_CAN_RESET_CAN ... 10
IOCTL_IP_CAN_SET_CAN_MODE.. 10
IOCTL_IP_CAN_REINIT_CHANS ... 10
IOCTL_IP_CAN_REGISTER_EVENT ... 11
IOCTL_IP_CAN_FORCE_INTERRUPT .. 11
IOCTL_IP_CAN_SET_VECTOR ... 11
IOCTL_IP_CAN_GET_VECTOR ... 11
IOCTL_IP_CAN_ISR_STATUS ... 12
IOCTL_BCAN_GET_INFO .. 13
IOCTL_BCAN_SET_CONTROL ... 13
IOCTL_BCAN_GET_STATE ... 13
IOCTL_BCAN_GET_STATUS .. 14
IOCTL_BCAN_RESET_CAN .. 14
IOCTL_BCAN_GET_CAN_STATUS .. 14
IOCTL_BCAN_GET_INT_STATUS .. 15
IOCTL_BCAN_SET_TIMING_CONFIG .. 15
IOCTL_BCAN_GET_TIMING_CONFIG .. 15
IOCTL_BCAN_SET_ACCEPT_CONFIG .. 16
IOCTL_BCAN_GET_ACCEPT_CONFIG .. 16
IOCTL_BCAN_SET_INTERRUPT_CONFIG .. 16
IOCTL_BCAN_GET_INTERRUPT_CONFIG .. 16
IOCTL_BCAN_SET_COMMAND .. 17
IOCTL_BCAN_REGISTER_EVENT .. 17
IOCTL_BCAN_ENABLE_INTERRUPT .. 17
IOCTL_BCAN_DISABLE_INTERRUPT ... 17
IOCTL_BCAN_FORCE_INTERRUPT ... 18
IOCTL_BCAN_GET_ISR_STATUS .. 18

Write .. 19
Read .. 19

IOCTL_PCAN_GET_INFO .. 20
IOCTL_PCAN_SET_CONTROL ... 20
IOCTL_PCAN_GET_STATE ... 20
IOCTL_PCAN_GET_STATUS .. 21
IOCTL_PCAN_SET_MODE .. 21
IOCTL_PCAN_GET_MODE .. 21

Table of Contents

 Embedded Solutions Page 4 of 29

IOCTL_PCAN_SET_ERR_COUNT ... 22
IOCTL_PCAN_GET_ERR_COUNT .. 22
IOCTL_PCAN_GET_CAN_STATUS ... 22
IOCTL_PCAN_GET_INT_STATUS ... 23
IOCTL_PCAN_SET_TIMING_CONFIG... 23
IOCTL_PCAN_GET_TIMING_CONFIG .. 24
IOCTL_PCAN_SET_ACCEPT_CONFIG .. 24
IOCTL_PCAN_GET_ACCEPT_CONFIG .. 24
IOCTL_PCAN_SET_INTERRUPT_CONFIG .. 24
IOCTL_PCAN_GET_INTERRUPT_CONFIG .. 25
IOCTL_PCAN_SET_COMMAND .. 25
IOCTL_PCAN_REGISTER_EVENT .. 25
IOCTL_PCAN_ENABLE_INTERRUPT ... 25
IOCTL_PCAN_DISABLE_INTERRUPT .. 26
IOCTL_PCAN_FORCE_INTERRUPT ... 26
IOCTL_PCAN_GET_ISR_STATUS .. 26

Write .. 28
Read .. 28

Warranty and Repair ... 29
Service Policy ... 29

Out of Warranty Repairs .. 29
For Service Contact: .. 29

 Embedded Solutions Page 5 of 29

Introduction

The IpCan, BCan and PCan drivers are Windows device drivers for the IP-CAN 2-
channel Controller Area Network (CAN) Interface IndustryPack® Module from Dynamic
Engineering. These drivers were developed with the Windows Driver Foundation
version 1.9 (WDF) from Microsoft, specifically the Kernel-Mode Driver Framework
(KMDF). The IP-CAN board has a Spartan2 Xilinx FPGA to implement the Industry
Pack interface and protocol control and status for two CAN channels. The CAN channel
devices are implemented with a pair of Phillips SJA-1000’s. They can operate in one of
two modes: BasicCan or PeliCan mode. The BCan driver controls a device operating in
BasicCan mode, while the PCan driver controls a device in PeliCan mode. The
appropriate driver is loaded automatically for the operating mode selected.

When the IP-CAN is recognized by the system configuration utility it will start the IpCan
driver. The IpCan driver enumerates the channels and creates two separate BCan or
PCan device objects. This allows the I/O channels to be totally independent while the
base driver controls the device items that are common. IO Control calls (IOCTLs) are
used to configure the board and read status. Read and Write calls are used to move
data in and out of the I/O channel devices. When the CAN devices are first powered-
on, or after a hardware reset has been issued, the CAN devices will be in BasicCan
mode. If desired, an IOCTL call to the IpCan driver can be issued to change the
operating mode and the channel driver will be changed appropriately.

Note

This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the IP-CAN user manual (also
referred to as the hardware manual). Can device data sheet refers to the Phillips
SJA1000 Stand-alone CAN controller data sheet. Additional information may be found
in application note AN97076 from Phillips.

 Embedded Solutions Page 6 of 29

Driver Installation

Warning: All Dynamic Engineering IndustryPack module drivers are only compatible
with one of the Dynamic Engineering IP carriers and carrier drivers (PCI, PCIe,
CompactPCI or PC104p). The appropriate IP carrier driver must be installed before any
IP modules can be detected by the system.

There are several files provided in each driver package. These files include IpCan.sys,
IpCanPublic.h, BCan.sys, BCanPublic.h, PCan.sys, PCanPublic.h, IpPublic.h,
IpModDrivers.cat, IpModDrivers.inf and WdfCoInstaller01009.dll.

IpPublic.h, IpCanPublic.h, BCanPublic.h and PCanPublic.h are ‘C’ header files that
define the Application Program Interface (API) to the respective drivers. These files are
required at compile time by any application that wishes to interface with the drivers, but
they are not needed for driver installation.

Note: Other IP module drivers are included in the package since they were all signed
together and must be present to validate the digital signature. These other IP module
driver files must be present when the IpCan drivers are installed, to verify the digital
signature in IpModDrivers.cat, otherwise they can be ignored.

 Embedded Solutions Page 7 of 29

Windows 7 Installation

Copy IpModDrivers.inf, IpModDrivers.cat, IpCan.sys, BCan.sys, PCan.sys,
WdfCoInstaller01009.dll, and the other IP module drivers to a removable memory
device or other accessible location as preferred.

With the IpCan hardware installed, power-on the host computer.

 Open the Device Manager from the control panel.

 Under Other devices there should be an item for each IP module installed on the IP
carrier. The label for a module installed in the first slot of the first PCIe-3IP carrier
would read PcieCar0 IP Slot A*.

 Right-click on the first device and select Update Driver Software.

 Insert the removable memory device prepared above if necessary.

 Select Browse my computer for driver software.

 Select Browse and navigate to the memory device or other location prepared above.

 Select Next. The IpCan device driver should now be installed.

 Select Close to close the update window.
The system should now see the IpCan Can channels. Proceed as above to install the
BCan/PCan driver for each channel as necessary. The BCan driver is the default when
the IpCan driver is first installed.

Note: To install the PCan driver, a call to IOCTL_IP_CAN_SET_CAN_MODE with the
enumerated input parameter set to PELI_CAN must be made.

 Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

* If the [Carrier] IP Slot [x] devices are not displayed, click on the Scan for hardware
changes icon on the Device Manager tool-bar.

Driver Startup

Once the driver has been installed it will start automatically when the system recognizes
the hardware. A handle can be opened to a specific board by using the CreateFile()
function call and passing in the device name obtained from the system. The interface to
the devices are identified using globally unique identifiers (GUIDs), which are defined in
IpCanPublic.h, BCanPublic.h and PCanPublic.h.

The main.c file provided with the user test software can be used as an example to show
how to obtain handles to an IpCan device and its I/O channel devices. To cross-
reference the device number to the physical carrier slot in which the IpCan device is
installed, use the IpCan GetInfo control call which returns a DRIVER_IP_DEVICE_INFO
structure. This structure contains information about the IpCan module and the carrier in
which it is installed, including a Location string as described in the installation procedure
above.

 Embedded Solutions Page 8 of 29

IO Controls

The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(

 HANDLE hDevice, // Handle opened with CreateFile()

 DWORD dwIoControlCode, // Control code defined in API header file

 LPVOID lpInBuffer, // Pointer to input parameter

 DWORD nInBufferSize, // Size of input parameter

 LPVOID lpOutBuffer, // Pointer to output parameter

 DWORD nOutBufferSize, // Size of output parameter

 LPDWORD lpBytesReturned, // Pointer to return length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure

); // used for asynchronous I/O

The IOCTLs defined for the IpCan driver are described below:

IOCTL_IP_CAN_GET_INFO

Function: Returns information about the IP module, the IP carrier it is installed in and their
drivers.
Input: None
Output: IP_CAN_DRIVER_DEVICE_INFO structure
Notes: Instance number is the zero-based module number assigned in the order the IP
devices are encountered by the system. If Ip32MCapable is TRUE, then the IP module
can operate at either 8 MHz or 32 MHz. If NewIpCntl is TRUE, then the IP module is
installed in a PCIe-based carrier and has some additional IP bus control parameters.
See the definition of DRIVER_IP_DEVICE_INFO below, which is defined in IpPublic.h.

#define IP_LOC_STRING_SIZE 25 // Maximum size of location string (WCHARs)

typedef struct _DRIVER_IP_DEVICE_INFO {

 UCHAR DriverRev; // Driver revision

 UCHAR FirmwareRev; // Firmware major revision

 UCHAR FirmwareRevMin; // Firmware minor revision

 UCHAR InstanceNum; // Zero-based device number

 UCHAR CarrierSwitch; // 0..0xFF

 UCHAR CarrierSlotNum; // 0..7 -> IP slots A, B, C, D, E, F, G or H

 UCHAR CarDriverRev; // Carrier driver revision

 UCHAR CarFirmwareRev; // Carrier firmware major revision

 UCHAR CarFirmwareRevMin;// Carrier firmware minor revision

 UCHAR CarCPLDRev; //**Used for PCIe carriers only** 0xFF for others

 UCHAR CarCPLDRevMin; //**Used for PCIe carriers only** 0xFF for others

 BOOLEAN Ip32MCapable; // IP is capable of both 8MHz and 32MHz operation

 BOOLEAN NewIpCntl; // New IP slot control interface

 WCHAR LocationString[IP_LOC_STRING_SIZE];

} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

 Embedded Solutions Page 9 of 29

IOCTL_IP_CAN_SET_IP_CONTROL

Function: Sets the IP clock rate and other configuration parameters for the IP slot.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Some of the fields in this structure are only applicable if the IP-CAN is installed
in a PCIe-based carrier slot (NewIpCntl is TRUE). See the definition of
IP_SLOT_CONTROL below.

typedef struct _IP_SLOT_CONTROL {

 BOOLEAN Clock32Sel;

 BOOLEAN ClockDis;

 BOOLEAN ByteSwap;

 BOOLEAN WordSwap;

 BOOLEAN WrIncDis;

 BOOLEAN RdIncDis;

 UCHAR WrWordSel;

 UCHAR RdWordSel;

 BOOLEAN BsErrTmOutSel;

 BOOLEAN ActCountEn;

} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

IOCTL_IP_CAN_GET_IP_STATE

Function: Returns the configuration parameters for the IP slot that were set by the
previous call, as well as several read-only status bits.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot configuration register value for the IP slot that the board
occupies. Interrupt enable and activity status information is also returned. See the
definition of IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {

 BOOLEAN Clock32Sel;

 BOOLEAN ClockDis;

 BOOLEAN ByteSwap;

 BOOLEAN WordSwap;

 BOOLEAN WrIncDis;

 BOOLEAN RdIncDis;

 UCHAR WrWordSel;

 UCHAR RdWordSel;

 BOOLEAN BsErrTmOutSel;

 BOOLEAN ActCountEn;

 // Slot Status

 BOOLEAN IpInt0En;

 BOOLEAN IpInt1En;

 BOOLEAN IpBusErrIntEn;

 BOOLEAN IpInt0Actv;

 BOOLEAN IpInt1Actv;

 BOOLEAN IpBusError;

 BOOLEAN IpForceInt;

 BOOLEAN WrBusError;

 BOOLEAN RdBusError;

} IP_SLOT_STATE, *PIP_SLOT_STATE;

 Embedded Solutions Page 10 of 29

IOCTL_IP_CAN_GET_STATUS

Function: Returns the status bits in the IP_CAN_STATUS register.
Input: None
Output: Status register contents (unsigned short integer)
Notes: Returns the interrupt and error status for the two Can devices. See the bit
definitions below for more information.

 // IP-Can status register bit defines

#define STAT_LOC_INT 0x0001 // Local interrupt active

#define STAT_CAN_0_INT 0x0010 // CAN 0 interrupt bit

#define STAT_CAN_0_ERR 0x0020 // CAN 0 error bit

#define STAT_CAN_1_INT 0x0040 // CAN 1 interrupt bit

#define STAT_CAN_1_ERR 0x0080 // CAN 1 error bit

IOCTL_IP_CAN_RESET_CAN

Function: Does a hardware reset of one of the Can devices.
Input: Can channel to reset (unsigned char)
Output: None
Notes: The input parameter can only be zero or one. The Can device will revert to
BasicCan mode after a hardware reset.

IOCTL_IP_CAN_SET_CAN_MODE

Function: Selects the operating mode for a Can device.
Input: Can channel and mode (IP_CAN_CHAN_MODE structure)
Output: None
Notes: All handles referencing the channel device must be closed before issuing this
command or the device object will not be removed from the system.

typedef enum _IP_CAN_MODE_SEL {

 BASIC_CAN,

 PELI_CAN

} IP_CAN_MODE_SEL, *PIP_CAN_MODE_SEL;

 // Channel configuration

typedef struct _IP_CAN_CHAN_MODE {

 UCHAR Channel;

 IP_CAN_MODE_SEL Mode;

} IP_CAN_CHAN_MODE, *PIP_CAN_CHAN_MODE;

IOCTL_IP_CAN_REINIT_CHANS

Function: Causes the CAN channels to be re-enumerated.
Input: None
Output: None
Notes: This call is used to re-evaluate the channel device operating mode after the
CAN channel mode has been changed.

 Embedded Solutions Page 11 of 29

IOCTL_IP_CAN_REGISTER_EVENT

Function: Registers an Event object to be signalled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_IP_CAN_FORCE_INTERRUPT

Function: Causes an IP interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus if the master interrupt is
enabled. This IOCTL is used for test and development, to test interrupt processing.

IOCTL_IP_CAN_SET_VECTOR

Function: Sets the value of the interrupt vector.
Input: Unsigned character
Output: None
Notes: This value will be driven onto the low byte of the data bus in response to an
INT_SEL strobe, which is used in vectored interrupt cycles. The vector is read in the
interrupt service routine and stored for future reference.

IOCTL_IP_CAN_GET_VECTOR

Function: Returns the current interrupt vector value.
Input: None
Output: Unsigned character
Notes: Reads the vector storage register and returns the contents.

 Embedded Solutions Page 12 of 29

IOCTL_IP_CAN_ISR_STATUS

Function: Returns the interrupt status and vector read in the last ISR.
Input: None
Output: IP_CAN_ISR_STATUS structure
Notes: The status contains the interrupt vector and the contents of the status register
read in the last ISR execution. Also, if bit 12 is set in the interrupt status, it indicates
that a bus error occurred for this IP slot. See the definition of IP_CAN_ISR_STATUS
below.

 // Interrupt status and vector

typedef struct _IP_CAN_ISR_STATUS {

 USHORT InterruptStatus;

 USHORT InterruptVector;

} IP_CAN_ISR_STATUS, *PIP_CAN_ISR_STATUS;

 Embedded Solutions Page 13 of 29

The IOCTLs defined for the BCan driver are described below:

IOCTL_BCAN_GET_INFO

Function: Returns the channel driver revision, Xilinx design revision, the IpCan device number
and the Can channel number.
Input: None
Output: BCAN_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to all apply to the same physical
module in the application software. See below for the definition of
BCAN_DRIVER_DEVICE_INFO.

 // Driver revision and device instance/channel information

typedef struct _BCAN_DRIVER_DEVICE_INFO {

 UCHAR DriverRev;

 UCHAR DeviceNum;

 UCHAR Channel;

 UCHAR XilinxRev;

} BCAN_DRIVER_DEVICE_INFO, *PBCAN_DRIVER_DEVICE_INFO;

IOCTL_BCAN_SET_CONTROL

Function: Sets the controls for the bus transceiver and bus terminations.
Input: BCAN_CONFIG structure
Output: None
Notes: Controls the transceiver enable and stand-by controls and the termination
enable (except rev.A Xilinx which is determined by hardware). See the definition of
BCAN_CONFIG below.

typedef struct _BCAN_CONFIG {

 BOOLEAN TxEnable;

 BOOLEAN TxStandby;

 BOOLEAN TermEnable;

} BCAN_CONFIG, *PBCAN_CONFIG;

IOCTL_BCAN_GET_STATE

Function: Returns the Can channel control configuration.
Input: None
Output: BCAN_STATE structure
Notes: Returns the device enable, interrupt enable, bus transceiver controls and
termination enable state. See the definition of BCAN_STATE below.

typedef struct _BCAN_STATE {

 BOOLEAN TxEnable;

 BOOLEAN TxStandby;

 BOOLEAN TermEnable;

 BOOLEAN CanEnable;

 BOOLEAN IntEnable;

} BCAN_STATE, *PBCAN_STATE;

 Embedded Solutions Page 14 of 29

IOCTL_BCAN_GET_STATUS

Function: Returns the Can device interrupt and transceiver error status.
Input: None
Output: BCAN_STATUS structure
Notes: See the definition of BCAN_STATUS below.

typedef struct _BCAN_STATUS {

 BOOLEAN CanInt;

 BOOLEAN CanError;

 BOOLEAN LocalInt;

} BCAN_STATUS, *PBCAN_STATUS;

IOCTL_BCAN_RESET_CAN

Function: Performs a software reset of the Can device.
Input: None
Output: None
Notes: The operating mode and many of the Can internal registers will be unchanged
by this call. See the Can device data sheet for more information on which registers are
affected.

IOCTL_BCAN_GET_CAN_STATUS

Function: Returns the Can device internal status register values.
Input: None
Output: BCAN_CAN_STATUS structure
Notes: See the Can device data sheet for information on the meaning of the status bits.
See the definition of BCAN_CAN_STATUS below.

typedef struct _BCAN_CAN_STATUS {

 BOOLEAN RxAvlb; // Receive message available

 BOOLEAN DataOvrn; // Receive data overrun occurred

 BOOLEAN TxAvlb; // Transmit buffer available for write

 BOOLEAN TxDone; // Current transmission complete

 BOOLEAN RxActv; // Reception in progress

 BOOLEAN TxActv; // Transmission in progress

 BOOLEAN Error; // An error counter has reached the warning level

 BOOLEAN BusOff; // Can not active on bus

} BCAN_CAN_STATUS, *PBCAN_CAN_STATUS;

 Embedded Solutions Page 15 of 29

IOCTL_BCAN_GET_INT_STATUS

Function: Returns the contents of the Can interrupt register and associated
information.
Input: None
Output: BCAN_INT_STATUS structure
Notes: If the receive interrupt is asserted, the first byte of the receive buffer will be read
and returned in the RxInfo field. This will specify the length of the pending message. If
the receive interrupt is not asserted 0xff will be returned in the RxInfo field. See the
definition of BCAN_INT_STATUS below.

typedef struct _BCAN_INT_STATUS {

 UCHAR CanIntReg;

 UCHAR RxInfo;

} BCAN_INT_STATUS, *PBCAN_INT_STATUS;

IOCTL_BCAN_SET_TIMING_CONFIG

Function: Sets the Can-bus timing parameters.
Input: BCAN_TIMING_CONFIG structure
Output: None
Notes: This call controls the bit-rate, synchronization jump width, the bit sample point
and how many times each bit will be sampled. All the values passed are one less than
the effective value. See the Can device data sheet for more information. See the
definition of BCAN_TIMING_CONFIG below.

typedef struct _BCAN_TIMING_CONFIG {

 UCHAR PreScaler; // 0..63

 UCHAR SyncJumpWidth; // 0..3

 UCHAR TimeSeg1; // 0..15

 UCHAR TimeSeg2; // 0..7

 BOOLEAN Sample3; // Samples/bit period 1|3

} BCAN_TIMING_CONFIG, *PBCAN_TIMING_CONFIG;

IOCTL_BCAN_GET_TIMING_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: BCAN_TIMING_CONFIG structure
Notes: See the Can device data sheet for more information. See the definition of
BCAN_TIMING_CONFIG above.

 Embedded Solutions Page 16 of 29

IOCTL_BCAN_SET_ACCEPT_CONFIG

Function: Sets the acceptance filter code and mask.
Input: BCAN_ACCEPT_CONFIG structure
Output: None
Notes: The BasicCan mode only compares the first eight bits of the message identifier
to determine acceptance. The mask determines which bits will be checked or ignored.
See the Can device data sheet for more information. See the definition of
BCAN_ACCEPT_CONFIG below.

typedef struct _BCAN_ACCEPT_CONFIG {

 UCHAR AcceptCode; // Match against id(10..3)

 UCHAR AcceptMask; // b(x)=0->check =1->don't care

} BCAN_ACCEPT_CONFIG, *PBCAN_ACCEPT_CONFIG;

IOCTL_BCAN_GET_ACCEPT_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: BCAN_ACCEPT_CONFIG structure
Notes: See the Can device data sheet for more information. See the definition of
BCAN_ACCEPT_CONFIG above.

IOCTL_BCAN_SET_INTERRUPT_CONFIG

Function: Sets the Can device interrupt enables.
Input: BCAN_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the Can device will cause an interrupt. See the
Can device data sheet for interrupt condition descriptions. See the definition of
BCAN_INT_CONFIG below.

typedef struct _BCAN_INT_CONFIG {

 BOOLEAN RxIntEn; // Receive interrupt enable

 BOOLEAN TxIntEn; // Transmit interrupt enable

 BOOLEAN ErrIntEn; // Error interrupt enable

 BOOLEAN OvrnIntEn; // Data overrun interrupt enable

} BCAN_INT_CONFIG, *PBCAN_INT_CONFIG;

IOCTL_BCAN_GET_INTERRUPT_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: BCAN_INT_CONFIG structure
Notes: See the Can device data sheet for interrupt condition descriptions. See the
definition of BCAN_INT_CONFIG above.

 Embedded Solutions Page 17 of 29

IOCTL_BCAN_SET_COMMAND

Function: Issues a command to the Can device.
Input: BCAN_COMMAND_SEL enumerated type
Output: None
Notes: Causes the Can device to initiate a function, such as send a message. See the
Can device data sheet for command descriptions. See the definition of
BCAN_COMMAND_SEL below.

typedef enum _BCAN_COMMAND_SEL {

 BCAN_TREQ, // Transmission request

 BCAN_TABRT, // Transmission abort

 BCAN_RRLS, // Receive buffer release

 BCAN_CLRDO, // Clear data overrun

 BCAN_SLEEP // Go-to-sleep request

} BCAN_COMMAND_SEL, *PBCAN_COMMAND_SEL;

IOCTL_BCAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_BCAN_ENABLE_INTERRUPT

Function: Enables the Can channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the Can channel to generate interrupts.
The master interrupt is disabled in the driver interrupt service routine. Therefore this
command must be run after each interrupt is processed to re-enable the interrupts.

IOCTL_BCAN_DISABLE_INTERRUPT

Function: Disables the Can channel master interrupt.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.

 Embedded Solutions Page 18 of 29

IOCTL_BCAN_FORCE_INTERRUPT

Function: Causes a Can channel interrupt to be asserted.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the Can
device. This IOCTL is used for test and development, to test interrupt processing. The
channel force interrupt is not implemented in the rev.A Xilinx design.

IOCTL_BCAN_GET_ISR_STATUS

Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status value (BCAN_ISR_STATUS)
Notes: Returns the status that was read in the interrupt service routine for the last Can
channel interrupt serviced. The BCAN_INT and BCAN_ERR bits are shifted down three
or five positions depending on the Can channel number to make them consistent for
each channel. If the IR_RX bit is set in the Can device interrupt register, the first byte of
the receiver buffer will be read and returned. A value of 0xff means no info returned.

#define LOC_INT_ACTV 0x01

#define BCAN_INT 0x02

#define BCAN_ERR 0x04

 // Interrupt register bit defines

#define IR_RX 0x01

#define IR_TX 0x02

#define IR_ERR 0x04

#define IR_OVR 0x08

#define IR_WKUP 0x10

 // Rx buffer length info bit defines

#define RX_DLC_0 0x01

#define RX_DLC_1 0x02

#define RX_DLC_2 0x04

#define RX_DLC_3 0x08

#define RX_RTR 0x10 // Remote transmission request

typedef struct _BCAN_ISR_STATUS {

 UCHAR IntStatReg;

 UCHAR CanIntReg;

 UCHAR RxInfo;

} BCAN_ISR_STATUS, *PBCAN_ISR_STATUS;

 Embedded Solutions Page 19 of 29

Write

BCan data is written to the device using the write command. Writes are executed using
the Win32 function WriteFile() (see below) and passing in the handle to the target
device, a pointer to a pre-allocated buffer containing the data to be written, an unsigned
long integer that represents the number of bytes to be transferred, a pointer to an
unsigned long integer to contain the number of bytes actually written, and a pointer to
an optional Overlapped structure for performing asynchronous I/O. The BasicCan
transmit buffer is only 10 bytes long, therefore that is the maximum length that can be
written with a single write command.

BOOL WriteFile(

 HANDLE hDevice, // Handle opened with CreateFile()

 LPVOID lpBuffer, // Pointer to write buffer

 DWORD nNumberOfBytesToWrite, // Size of write buffer

 LPDWORD lpNumberOfBytesWritten,// Pointer to actual length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

); // structure used for asynchronous I/O

Read

BCan data is read from the device using the read command. Reads are executed using
the Win32 function ReadFile() (see below) and passing in the handle to the target
device, a pointer to a pre-allocated buffer that will contain the data read, an unsigned
long integer that represents the number of bytes to be transferred, a pointer to an
unsigned long integer to contain the number of bytes actually read, and a pointer to an
optional Overlapped structure for performing asynchronous I/O. The BasicCan receive
buffer is only 10 bytes long, therefore that is the maximum length that can be read with
a single read command.

BOOL ReadFile(

 HANDLE hDevice, // Handle opened with CreateFile()

 LPVOID lpBuffer, // Pointer to read buffer

 DWORD nNumberOfBytesToRead, // Size of read buffer

 LPDWORD lpNumberOfBytesRead, // Pointer to actual length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

); // structure used for asynchronous I/O

 Embedded Solutions Page 20 of 29

The IOCTLs defined for the PCan driver are described below:

IOCTL_PCAN_GET_INFO

Function: Returns the channel driver revision, Xilinx design revision, the IpCan device number
and the Can channel number.
Input: None
Output: PCAN_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to all apply to the same physical
module in the application software. See for the definition of
PCAN_DRIVER_DEVICE_INFO below.

// Driver revision and device instance/channel information

typedef struct _PCAN_DRIVER_DEVICE_INFO {

 UCHAR DriverRev;

 UCHAR DeviceNum;

 UCHAR Channel;

 UCHAR XilinxRev;

} PCAN_DRIVER_DEVICE_INFO, *PPCAN_DRIVER_DEVICE_INFO;

IOCTL_PCAN_SET_CONTROL

Function: Sets the controls for the bus transceiver and bus terminations.
Input: PCAN_CONFIG structure
Output: None
Notes: Controls the transceiver enable and stand-by controls and the termination
enable (except rev.A Xilinx which is determined by hardware). See the definition of
PCAN_CONFIG below.

typedef struct _PCAN_CONFIG {

 BOOLEAN TxEnable;

 BOOLEAN TxStandby;

 BOOLEAN TermEnable;

} PCAN_CONFIG, *PPCAN_CONFIG;

IOCTL_PCAN_GET_STATE

Function: Returns the Can channel control configuration.
Input: None
Output: PCAN_STATE structure
Notes: Returns the device enable, interrupt enable, bus transceiver controls and
termination enable state. See the definition of PCAN_STATE below.

typedef struct _PCAN_STATE {

 BOOLEAN TxEnable;

 BOOLEAN TxStandby;

 BOOLEAN TermEnable;

 BOOLEAN CanEnable;

 BOOLEAN IntEnable;

} PCAN_STATE, *PPCAN_STATE;

 Embedded Solutions Page 21 of 29

IOCTL_PCAN_GET_STATUS

Function: Returns the Can device interrupt and transceiver error status.
Input: None
Output: PCAN_STATUS structure
Notes: See for the definition of PCAN_STATUS below.

typedef struct _PCAN_STATUS {

 BOOLEAN CanInt;

 BOOLEAN CanError;

 BOOLEAN LocalInt;

} PCAN_STATUS, *PPCAN_STATUS;

IOCTL_PCAN_SET_MODE

Function: Sets the configuration of the Can device mode register.
Input: PCAN_MODE structure
Output: None
Notes: Controls various operational mode parameters of the Can device. See the Can
device data sheet for information on the mode bits. See the definition of PCAN_MODE
below. Unlike the BasicCan driver the reset bit can be explicitly set and cleared to allow
setting up the registers that can only be written in reset mode at the same time. If the
device in not in reset mode, the driver will automatically assert and deassert the reset
for each appropriate configuration call.

typedef struct _PCAN_MODE {

 BOOLEAN ResetRqst; // Assert software reset

 BOOLEAN ListenOnly; // Put Can in listen-only mode

 BOOLEAN SelfTest; // Put Can in self-test mode

 BOOLEAN SingleFilter; // True=single filter, False=dual filter

 BOOLEAN GoToSleep; // Sleep if no int pending or bus activity

} PCAN_MODE, *PPCAN_MODE;

IOCTL_PCAN_GET_MODE

Function: Returns the values set in the previous call.
Input: None
Output: PCAN_MODE structure
Notes: See the Can device data sheet for information on the mode bits. See the
definition of PCAN_MODE above.

 Embedded Solutions Page 22 of 29

IOCTL_PCAN_SET_ERR_COUNT

Function: Writes a value to one of the error counters.
Input: PCAN_COUNT_SET structure
Output: None
Notes: Writes a value to either the Tx error, Rx error or error warning level count. See
the definitions of PCAN_ERR_COUNT_SEL and PCAN_COUNT_SET below.

typedef enum _PCAN_ERR_COUNT_SEL {

 PCAN_TX,

 PCAN_RX,

 PCAN_WARN

} PCAN_ERR_COUNT_SEL, *PPCAN_ERR_COUNT_SEL;

typedef struct _PCAN_COUNT_SET {

 PCAN_ERR_COUNT_SEL Counter;

 UCHAR Value;

} PCAN_COUNT_SET, *PPCAN_COUNT_SET;

IOCTL_PCAN_GET_ERR_COUNT

Function: Returns the value of one of the error counters.
Input: PCAN_ERR_COUNT_SEL enumerated type
Output: Error count (unsigned char)
Notes: Returns the current value of the Tx error, Rx error or error warning level count.
See the definition of PCAN_ERR_COUNT_SEL above.

IOCTL_PCAN_GET_CAN_STATUS

Function: Returns the state of the Can device internal status register.
Input: None
Output: PCAN_CAN_STATUS structure
Notes: See the Can device data sheet for information on the meaning of the status bits.
See the definition of PCAN_CAN_STATUS below.

typedef struct _PCAN_CAN_STATUS {

 BOOLEAN RxAvlb; // Receive message available

 BOOLEAN DataOvrn; // Receive data overrun occurred

 BOOLEAN TxAvlb; // Transmit buffer available for write

 BOOLEAN TxDone; // Current transmission complete

 BOOLEAN RxActv; // Reception in progress

 BOOLEAN TxActv; // Transmission in progress

 BOOLEAN Error; // An error counter has reached the warning level

 BOOLEAN BusOff; // Can not active on bus

} PCAN_CAN_STATUS, *PPCAN_CAN_STATUS;

 Embedded Solutions Page 23 of 29

IOCTL_PCAN_GET_INT_STATUS

Function: Returns the contents of the Can interrupt register and associated
information.
Input: None
Output: PCAN_INT_STATUS structure
Notes: If the receive interrupt is asserted, the first byte of the receive buffer will be read
and returned in the RxFrame field. This will specify the length of the pending message.
If the lost arbitration interrupt is asserted, the arbitration lost capture register is read and
returned in the AlcCode field. This will specify the bit position where arbitration was
lost. If the bus error interrupt is asserted, the error code capture register is read and
returned in the EccCode field. This register contains information about the type and
location of errors on the bus. See the interrupt bits and PCAN_INT_STATUS definitions
below. See the Can device data sheet for more information on these values.

#define IR_RX 0x01

#define IR_TX 0x02

#define IR_ERWN 0x04

#define IR_OVR 0x08

#define IR_WKUP 0x10

#define IR_ERPSV 0x20

#define IR_LARB 0x40

#define IR_BSERR 0x80

 typedef struct _PCAN_INT_STATUS {

 UCHAR CanIntReg;

 UCHAR RxFrame;

 UCHAR AlcCode;

 UCHAR EccCode;

} PCAN_INT_STATUS, *PPCAN_INT_STATUS;

IOCTL_PCAN_SET_TIMING_CONFIG

Function: Sets the Can-bus timing parameters.
Input: PCAN_TIMING_CONFIG structure
Output: None
Notes: This call controls the bit-rate, synchronization jump width, the bit sample point
and how many times each bit will be sampled. All the values passed are one less than
the effective value. See the Can device data sheet for more information. See the
definition of PCAN_TIMING_CONFIG below.

typedef struct _PCAN_TIMING_CONFIG {

 UCHAR PreScaler; // 0..63

 UCHAR SyncJumpWidth; // 0..3

 UCHAR TimeSeg1; // 0..15

 UCHAR TimeSeg2; // 0..7

 BOOLEAN Sample3; // Samples/bit period 1|3

} PCAN_TIMING_CONFIG, *PPCAN_TIMING_CONFIG;

 Embedded Solutions Page 24 of 29

IOCTL_PCAN_GET_TIMING_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: PCAN_TIMING_CONFIG structure
Notes: See the Can device data sheet for more information. See the definition of
PCAN_TIMING_CONFIG above.

IOCTL_PCAN_SET_ACCEPT_CONFIG

Function: Sets the acceptance filter code and mask.
Input: PCAN_ACCEPT_CONFIG structure
Output: None
Notes: The PeliCan mode compares up to 32 bits of the message identifier to
determine acceptance. The mask determines which bits will be checked or ignored.
See the Can device data sheet for more information. See the definition of
PCAN_ACCEPT_CONFIG below.

typedef struct _PCAN_ACCEPT_CONFIG {

 ULONG AcceptCode; // Match against id(28...)

 ULONG AcceptMask; // b(x)=0->check =1->don't care

} PCAN_ACCEPT_CONFIG, *PPCAN_ACCEPT_CONFIG;

IOCTL_PCAN_GET_ACCEPT_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: PCAN_ACCEPT_CONFIG structure
Notes: See the Can device data sheet for more information. See the definition of
PCAN_ACCEPT_CONFIG above.

IOCTL_PCAN_SET_INTERRUPT_CONFIG

Function: Sets the Can device interrupt enables.
Input: PCAN_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the Can device will cause an interrupt. See the
Can device data sheet for interrupt condition descriptions. See the definition of
PCAN_INT_CONFIG below.

typedef struct _PCAN_INT_CONFIG {

 BOOLEAN RxIntEn; // Receive interrupt enable

 BOOLEAN TxIntEn; // Transmit interrupt enable

 BOOLEAN ErrWrnIntEn; // Error warning interrupt enable

 BOOLEAN OvrnIntEn; // Data overrun interrupt enable

 BOOLEAN WkIntEn; // Wake-up interrupt enable

 BOOLEAN ErrPsvIntEn; // Error passive interrupt enable

 BOOLEAN ArbLstIntEn; // Arbitration lost interrupt enable

 BOOLEAN BusErrIntEn; // Bus error interrupt enable

} PCAN_INT_CONFIG, *PPCAN_INT_CONFIG;

 Embedded Solutions Page 25 of 29

IOCTL_PCAN_GET_INTERRUPT_CONFIG

Function: Returns the values set in the previous call.
Input: None
Output: PCAN_INT_CONFIG structure
Notes: See the Can device data sheet for interrupt condition descriptions. See the
definition of PCAN_INT_CONFIG above.

IOCTL_PCAN_SET_COMMAND

Function: Issues a command to the Can device.
Input: PCAN_COMMAND_SEL enumerated type
Output: None
Notes: Causes the Can device to initiate a function, such as send a message. See the
Can device data sheet for command descriptions. See the definition of
PCAN_COMMAND_SEL below.

typedef enum _PCAN_COMMAND_SEL {

 PCAN_TREQ, // Transmission request

 PCAN_TABRT, // Transmission abort

 PCAN_TSS, // Single-shot transmission request

 PCAN_RRLS, // Receive buffer release

 PCAN_CLRDO, // Clear data overrun

 PCAN_SRREQ, // Self-reception request

 PCAN_SRSS // Self-reception single-shot

} PCAN_COMMAND_SEL, *PPCAN_COMMAND_SEL;

IOCTL_PCAN_REGISTER_EVENT

Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_PCAN_ENABLE_INTERRUPT

Function: Enables the Can channel master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the Can channel to generate interrupts.
The master interrupt is disabled in the driver interrupt service routine. Therefore this
command must be run after each interrupt is processed to re-enable the interrupts.

 Embedded Solutions Page 26 of 29

IOCTL_PCAN_DISABLE_INTERRUPT

Function: Disables the master interrupt.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.

IOCTL_PCAN_FORCE_INTERRUPT

Function: Causes a Can channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the Can
device. This IOCTL is used for test and development, to test interrupt processing. The
channel force interrupt is not implemented in the rev.A Xilinx design.

IOCTL_PCAN_GET_ISR_STATUS

Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status value (PCAN_ISR_STATUS)
Notes: Returns the status that was read in the interrupt service routine for the last Can
channel interrupt serviced. The PCAN_INT and PCAN_ERR bits are shifted down three
or five positions depending on the Can channel number to make them consistent for
each channel. If the IR_RX bit is set in the Can device interrupt register, the frame
information byte of the receiver buffer will be read and returned. If the IR_LARB bit is
set in the Can device interrupt register, the Arbitration Lost Capture register will be read
and returned. If the IR_BSERR bit is set in the Can device interrupt register, the Error
Code Capture will be read and returned. A value of 0xff means no info returned.

#define LOC_INT_ACTV 0x01

#define PCAN_INT 0x02

#define PCAN_ERR 0x04

 // Interrupt register bit defines

#define IR_RX 0x01

#define IR_TX 0x02

#define IR_ERWN 0x04

#define IR_OVR 0x08

#define IR_WKUP 0x10

#define IR_ERPSV 0x20

#define IR_LARB 0x40

#define IR_BSERR 0x80

 // Rx buffer length info bit defines

#define RX_DLC_0 0x01

#define RX_DLC_1 0x02

#define RX_DLC_2 0x04

#define RX_DLC_3 0x08

#define RX_PRTR 0x40 // Remote transmission request

#define RX_FFMT 0x80 // Frame format 1=Extended 0=Standard

 Embedded Solutions Page 27 of 29

 //Arbitration lost capture register

#define ALC_0 0x01

#define ALC_1 0x02

#define ALC_2 0x04

#define ALC_3 0x08

#define ALC_4 0x10

 // Error code capture register

#define ECC_SEG_0 0x01

#define ECC_SEG_1 0x02

#define ECC_SEG_2 0x04

#define ECC_SEG_3 0x08

#define ECC_SEG_4 0x10

#define ECC_DIR 0x20

#define ECC_TYP_0 0x40

#define ECC_TYP_1 0x80

#define RX_NO_INFO 0xFF

#define ALC_NO_INFO 0xFF

#define ECC_NO_INFO 0xFF

typedef struct _PCAN_ISR_STATUS {

 UCHAR IntStatReg;

 UCHAR CanIntReg;

 UCHAR RxFrame;

 UCHAR AlcCode;

 UCHAR EccCode;

} PCAN_ISR_STATUS, *PPCAN_ISR_STATUS;

 Embedded Solutions Page 28 of 29

Write

PCan data is written to the device using the write command. Writes are executed using
the Win32 function WriteFile() (see below) and passing in the handle to the target
device, a pointer to a pre-allocated buffer containing the data to be written, an unsigned
long integer that represents the number of bytes to be transferred, a pointer to an
unsigned long integer to contain the number of bytes actually written, and a pointer to
an optional Overlapped structure for performing asynchronous I/O. The PeliCan
transmit buffer is only 13 bytes long, therefore that is the maximum length that can be
written with a single write command.

BOOL WriteFile(

 HANDLE hDevice, // Handle opened with CreateFile()

 LPVOID lpBuffer, // Pointer to write buffer

 DWORD nNumberOfBytesToWrite, // Size of write buffer

 LPDWORD lpNumberOfBytesWritten,// Pointer to actual length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

); // structure used for asynchronous I/O

Read

PCan data is read from the device using the read command. Reads are executed using
the Win32 function ReadFile() (see below) and passing in the handle to the target
device, a pointer to a pre-allocated buffer that will contain the data read, an unsigned
long integer that represents the number of bytes to be transferred, a pointer to an
unsigned long integer to contain the number of bytes actually read, and a pointer to an
optional Overlapped structure for performing asynchronous I/O. The PeliCan receive
buffer is only 13 bytes long, therefore that is the maximum length that can be read with
a single read command.

BOOL ReadFile(

 HANDLE hDevice, // Handle opened with CreateFile()

 LPVOID lpBuffer, // Pointer to read buffer

 DWORD nNumberOfBytesToRead, // Size of read buffer

 LPDWORD lpNumberOfBytesRead, // Pointer to actual length parameter

 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped

); // structure used for asynchronous I/O

 Embedded Solutions Page 29 of 29

Warranty and Repair

http://www.dyneng.com/warranty.html

Service Policy

Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing and in most cases it will be “cockpit error”
rather than an error with the driver. When you are sure or at least willing to pay to have
someone help then call the Customer Service Department and arrange to speak with an
engineer. We will work with you to determine the cause of the issue. If the issue is one
of a defective driver we will correct the problem and provide an updated module(s) to
you [no cost]. If the issue is of the customer’s making [anything that is not the driver]
the engineering time will be invoiced to the customer. Pre-approval may be required in
some cases depending on the customer’s invoicing policy.

Out of Warranty Repairs

Out of warranty support will be billed. An open PO will be required.

For Service Contact:

Customer Service Department
Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891 Fax (831) 457-4793
support@dyneng.com

All information provided is Copyright Dynamic Engineering.

http://www.dyneng.com/warranty.html
mailto:support@dyneng.com

