
DYNAMIC ENGINEERING
150 DuBois, Suite C

Santa Cruz, CA 95060
(831) 457-8891

http://www.dyneng.com
sales@dyneng.com

Est. 1988

Ip1553,
BC, MT, RT & RTM

WDF Driver Documentation

Developed with Windows Driver Foundation Ver1.19

Manual Revision 1P1
Corresponding PCB: Revision 03

10-2006-1403
Corresponding Firmware: Revision 0401

 Embedded Solutions Page 2 of 34

Ip1553, BC, MT, RT & RTM
WDF Device Drivers for the IP-1553
2-Channel MIL-STD 1553A/B
Interface IndustryPack® Module

Dynamic Engineering
150 DuBois, Suite C
Santa Cruz, CA 95060
(831) 457-8891
FAX: (831) 457-4793

This document contains information of
proprietary interest to Dynamic Engineering. It
has been supplied in confidence and the
recipient, by accepting this material, agrees that
the subject matter will not be copied or
reproduced, in whole or in part, nor its contents
revealed in any manner or to any person except
to meet the purpose for which it was delivered.

Dynamic Engineering has made every effort to
ensure that this manual is accurate and
complete. Still, the company reserves the right to
make improvements or changes in the product
described in this document at any time and
without notice. Furthermore, Dynamic
Engineering assumes no liability arising out of
the application or use of the device described
herein.

The electronic equipment described herein
generates, uses, and can radiate radio
frequency energy. Operation of this equipment
in a residential area is likely to cause radio
interference, in which case the user, at his own
expense, will be required to take whatever
measures may be required to correct the
interference.

Dynamic Engineering’s products are not
authorized for use as critical components in life
support devices or systems without the express
written approval of the president of Dynamic
Engineering.

Connection of incompatible hardware is likely to
cause serious damage.

©2020 by Dynamic Engineering.
Other trademarks and registered trademarks are owned by their
respective manufactures.
Manual Revised March 23, 2020

 Embedded Solutions Page 3 of 34

Introduction ... 6
Driver Installation .. 8

Windows 10 Installation ... 8
Driver Startup ... 9

IO Controls .. 9
IOCTL_IP_1553_GET_INFO ... 10
IOCTL_IP_1553_SET_IP_CONTROL ... 10
IOCTL_IP_1553_GET_IP_STATE ... 11
IOCTL_IP_1553_GET_STATUS .. 11
IOCTL_IP_1553_RESET_DEV .. 11
IOCTL_IP_1553_SET_MODE ... 12
IOCTL_IP_1553_GET_MODE ... 12
IOCTL_IP_1553_REGISTER_EVENT ... 12
IOCTL_IP_1553_FORCE_INTERRUPT .. 12
IOCTL_IP_1553_SET_VECTOR ... 13
IOCTL_IP_1553_GET_VECTOR ... 13
IOCTL_IP_1553_ISR_STATUS ... 13
IOCTL_IP_1553_LOOP_TEST .. 13
IOCTL_IP_1553_STOP_LOOP_TEST .. 13
IOCTL_IP_1553_WRITE_MEM_WORD .. 14
IOCTL_IP_1553_READ_MEM_WORD ... 14
IOCTL_IP_1553_GET_NUM_CHANS ... 14
IOCTL_BUS_CNTRL_GET_INFO ... 15
IOCTL_BUS_CNTRL_SET_CONFIG .. 15
IOCTL_BUS_CNTRL_GET_CONFIG .. 15
IOCTL_BUS_CNTRL_GET_STATUS .. 16
IOCTL_BUS_CNTRL_SET_MEM_WRITE_PTR ... 16
IOCTL_BUS_CNTRL_SET_MEM_READ_PTR ... 16
IOCTL_BUS_CNTRL_WRITE_MEM_WORD .. 16
IOCTL_BUS_CNTRL_READ_MEM_WORD ... 16
IOCTL_BUS_CNTRL_SET_IINST_PTR .. 17
IOCTL_BUS_CNTRL_GET_IINST_PTR ... 17
IOCTL_BUS_CNTRL_SET_GPQ_PTR ... 17
IOCTL_BUS_CNTRL_GET_GPQ_PTR ... 17
IOCTL_BUS_CNTRL_SET_INTERRUPT_CONFIG .. 17
IOCTL_BUS_CNTRL_GET_INTERRUPT_CONFIG ... 17
IOCTL_BUS_CNTRL_START_PROCESSING ... 18
IOCTL_BUS_CNTRL_STOP_PROCESSING ... 18

Table of Contents

 Embedded Solutions Page 4 of 34

IOCTL_BUS_CNTRL_SET_GP_FLAGS ... 18
IOCTL_BUS_CNTRL_GET_GP_FLAGS ... 18
IOCTL_BUS_CNTRL_REGISTER_EVENT ... 18
IOCTL_BUS_CNTRL_ENABLE_INTERRUPT .. 19
IOCTL_BUS_CNTRL_DISABLE_INTERRUPT ... 19
IOCTL_BUS_CNTRL_FORCE_INTERRUPT .. 19
IOCTL_BUS_CNTRL_GET_ISR_STATUS .. 19
IOCTL_MONITOR_GET_INFO .. 20
IOCTL_MONITOR_SET_CONFIG ... 20
IOCTL_MONITOR_GET_CONFIG .. 20
IOCTL_MONITOR_GET_STATUS .. 20
IOCTL_MONITOR_SET_MEM_WRITE_PTR ... 20
IOCTL_MONITOR_SET_MEM_READ_PTR ... 21
IOCTL_MONITOR_WRITE_MEM_WORD .. 21
IOCTL_MONITOR_READ_MEM_WORD .. 21
IOCTL_MONITOR_SET_ISQ_PTR ... 21
IOCTL_MONITOR_GET_ISQ_PTR ... 21
IOCTL_MONITOR_SET_INTERRUPT_CONFIG .. 22
IOCTL_MONITOR_GET_INTERRUPT_CONFIG .. 22
IOCTL_MONITOR_START_PROCESSING .. 22
IOCTL_MONITOR_STOP_PROCESSING .. 22
IOCTL_MONITOR_REGISTER_EVENT ... 22
IOCTL_MONITOR_ENABLE_INTERRUPT ... 23
IOCTL_MONITOR_DISABLE_INTERRUPT .. 23
IOCTL_MONITOR_FORCE_INTERRUPT .. 23
IOCTL_MONITOR_GET_ISR_STATUS .. 23
IOCTL_REM_TERM_GET_INFO .. 24
IOCTL_REM_TERM_SET_CONFIG ... 24
IOCTL_REM_TERM_GET_CONFIG ... 24
IOCTL_REM_TERM_GET_STATUS ... 24
IOCTL_REM_TERM_SET_MEM_WRITE_PTR .. 24
IOCTL_REM_TERM_SET_MEM_READ_PTR .. 25
IOCTL_REM_TERM_WRITE_MEM_WORD ... 25
IOCTL_REM_TERM_READ_MEM_WORD ... 25
IOCTL_REM_TERM_SET_ISQ_PTR .. 25
IOCTL_REM_TERM_GET_ISQ_PTR .. 25
IOCTL_REM_TERM_SET_INTERRUPT_CONFIG ... 26
IOCTL_REM_TERM_GET_INTERRUPT_CONFIG .. 26
IOCTL_REM_TERM_REGISTER_EVENT .. 26
IOCTL_REM_TERM_ENABLE_INTERRUPT .. 26
IOCTL_REM_TERM_DISABLE_INTERRUPT ... 26
IOCTL_REM_TERM_FORCE_INTERRUPT ... 27
IOCTL_REM_TERM_GET_ISR_STATUS ... 27
IOCTL_RM_TRM_MON_GET_INFO ... 28

 Embedded Solutions Page 5 of 34

IOCTL_RM_TRM_MON_SET_CONFIG .. 28
IOCTL_RM_TRM_MON_GET_CONFIG ... 28
IOCTL_RM_TRM_MON_GET_STATUS ... 28
IOCTL_RM_TRM_MON_SET_MEM_WRITE_PTR ... 29
IOCTL_RM_TRM_MON_SET_MEM_READ_PTR .. 29
IOCTL_RM_TRM_MON_WRITE_MEM_WORD ... 29
IOCTL_RM_TRM_MON_READ_MEM_WORD ... 29
IOCTL_RM_TRM_MON_SET_ISQ_PTR .. 30
IOCTL_RM_TRM_MON_GET_ISQ_PTR .. 30
IOCTL_RM_TRM_MON_SET_INTERRUPT_CONFIG ... 30
IOCTL_RM_TRM_MON_GET_INTERRUPT_CONFIG ... 30
IOCTL_RM_TRM_MON_REGISTER_EVENT .. 31
IOCTL_RM_TRM_MON_ENABLE_INTERRUPT .. 31
IOCTL_RM_TRM_MON_DISABLE_INTERRUPT ... 31
IOCTL_RM_TRM_MON_FORCE_INTERRUPT .. 31
IOCTL_RM_TRM_MON_GET_ISR_STATUS ... 32

Write .. 33
Read .. 33

Warranty and Repair .. 34
Service Policy .. 34

Support ... 34
For Service Contact: ... 34

 Embedded Solutions Page 6 of 34

Introduction
The Ip1553, BC, MT, RT and RTM drivers are Windows 10 device driver for the IP-1553
Industry-pack (IP) module from Dynamic Engineering. This driver was developed with
the Windows Driver Foundation version 1.19 (WDF) from Microsoft, specifically the
Kernel-Mode Driver Framework (KMDF).

The IP-1553 board has a Spartan6 Xilinx FPGA to implement the Industry Pack
interface and protocol control and status for two DDC channels. The 1553 devices can
operate in one of four modes: Bus Controller, Monitor, Remote Terminal or Remote
Terminal/Monitor mode. Respectively the BC, MT, RT or RTM drivers control the
devices when they are operating in these modes. The appropriate driver is loaded
automatically for the operating mode selected.

The IP-1553 driver package has two parts. The drivers and the User Application
“UserApp” executable. The drivers are delivered as installed and executable items to be
used directly or indirectly by the user. The UserApp code is delivered in source form [C]
and is for the purpose of providing a reference to using the driver.

The UserApp is a stand-alone code set with a simple, and powerful menu plus a series
of “tests” that can be run on the installed hardware. Each of the tests execute calls to
the driver, pass parameters and structures, and get results back. With the sequence of
calls demonstrated, the functions of the hardware are utilized for loop-back testing. The
software is used for manufacturing test at Dynamic Engineering.

The test software can be ported to your application to provide a running start. It is
recommended to port the Register tests to your application to get started. The tests are
simple and will quickly demonstrate the end-to-end operation of your application making
calls to the driver and interacting with the hardware.

The menu allows the user to add tests, to run sequences of tests, to run until a failure
occurs and stop or to continue, to program a set number of loops to execute and more.
The user can add tests to the provided test suite to try out application ideas before
committing to your system configuration. In many cases the test configuration will allow
faster debugging in a more controlled environment before integrating with the rest of the
system. The test suite is designed to accommodate up to 5 boards. The number of
boards can be expanded. See Main.c to increase the number of handles.

The hardware manual defines the pinout, the bitmaps and detailed configurations for
each feature of the design. The driver handles all aspects of interacting with the
hardware. For added explanations about what some of the driver functions do, please
refer to the hardware manual.

 Embedded Solutions Page 7 of 34

We strive to make a useable product, and while we can guarantee operation we can’t
foresee all concepts for client implementation. If you have suggestions for extended
features, special calls for particular set-ups or whatever please share them with us,
[engineering@dyneng.com] and we will consider, and in many cases add them.

When the IP-1553 is recognized by the system configuration utility it will start the Ip1553
driver. The Ip1553 driver enumerates the channels and creates one or two separate BC,
MT, RT or RTM device objects. If two devices are installed, this allows the I/O channels
to be totally independent while the base driver controls the device items that are
common. IO Control calls (IOCTLs) are used to configure the board and read status.
Read and Write calls are used to move data in and out of the I/O channel device
memory. When the 1553 devices are first powered-on, or after a hardware reset has
been issued, the channel devices will be in Idle mode. If channel drivers have never
been installed onto machine, then an IOCTL call to the Ip1553 driver followed by
installation of corresponding driver in the device manager, is necessary. After the driver
has been installed once, simply calling the appropriate IOCTL will change the operating
mode of the channel.

Note:
This documentation will provide information about all calls made to the drivers, and how
the drivers interact with the device for each of these calls. For more detailed
information on the hardware implementation, refer to the IP-1553 user manual (also
referred to as the hardware manual) and HoltIC 62203 User Guide available from –
http://www.holtic.com

 Embedded Solutions Page 8 of 34

Driver Installation
There are several files provided in each driver package. These files include Ip1553.sys,
BusCntrl.sys, Montor.sys, RemTerm.sys, RmTrmMon.sys, Ip1553Public.h, IpPublic.h,
BusCntrlPublic.h, MontorPublic.h, RemTermPublic.h, RemTrmMonPublic.h, Ip1553.inf,
BusCntrl.inf, Montor.inf, RemTerm.inf, RmTrmMon.inf, ip1553.cat, buscntrl.cat,
montor.cat, remterm.cat, and rmtrmmon.cat.

Ip1553Public.h, BusCntrlPublic.h, MontorPublic.h, RemTermPublic.h,
RemTrmMonPublic.h, and IpPublic.h are C header files that define the Application
Program Interface (API) to the driver. These files are required at compile time by any
application that wishes to interface with the driver, but are not needed for driver
installation.

Warning: The appropriate IP carrier driver must be installed before any IP modules can
be detected by the system.

Windows 10 Installation
Copy the inf files, the cat files, the sys files, and the other IP module drivers to a
removable memory device or other accessible location as preferred.

With the IP hardware installed, power-on the host computer.

• Open the Device Manager from the control panel.
• Under Other devices there should be an item for each IP module installed on the IP

carrier. The label for a module installed in the first slot of the first PCIe3IP carrier would
read PcieCar0 IP Slot A*.

• Right-click on the first device and select Update Driver Software.
• Insert the removable memory device prepared above if necessary.
• Select Browse my computer for driver software.
• Select Browse and navigate to the memory device or other location prepared above.
• Select Next. The IP1553 device driver should now be installed.
• Select Close to close the update window.
• Right-click on the remaining IP slot icons and repeat the above procedure as
necessary.

* If the [Carrier] IP Slot [x] devices are not displayed, click on the Scan for hardware
changes icon on the Device Manager tool-bar.

Note: When the 1553 Base driver is installed the channel(s) will be in Idle mode. In order

to install the channel driver(s) the SetChanMode IOCTL must be called, followed by a
manual installation in the Device Manager. After the channel driver has been installed
using the Device Manage once, then a call to the IOCTL is sufficient for installation.

 Embedded Solutions Page 9 of 34

Driver Startup
Once the driver has been installed it will start automatically when the system recognizes
the hardware.

A handle can be opened to a specific module by using the CreateFile() function call and
passing in the device name obtained from the system.

See the main.c file provided with the user test software for an example of obtaining a
device handle to a specific module. Use IOCTL_IP_1553_MODE described in the IO
controls section in order to set a channel to the desired mode. See the Set1553Dev.c
file for an example how this is done.

IO Controls
The driver uses IO Control calls (IOCTLs) to configure the device. IOCTLs refer to a
single Device Object, which controls a single board or I/O channel. IOCTLs are called
using the Win32 function DeviceIoControl() (see below), and passing in the handle to
the device opened with CreateFile() (see above). IOCTLs generally have input
parameters, output parameters, or both. Often a custom structure is used.

BOOL DeviceIoControl(
 HANDLE hDevice, // Handle opened with CreateFile()
 DWORD dwIoControlCode, // Control code defined in API header file
 LPVOID lpInBuffer, // Pointer to input parameter
 DWORD nInBufferSize, // Size of input parameter
 LPVOID lpOutBuffer, // Pointer to output parameter
 DWORD nOutBufferSize, // Size of output parameter
 LPDWORD lpBytesReturned, // Pointer to return length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped structure
); // used for asynchronous I/O

 Embedded Solutions Page 10 of 34

The IOCTLs defined for the Ip1553 driver are described below:

IOCTL_IP_1553_GET_INFO
Function: Returns the driver and firmware revisions, module instance number and
location and other information.
Input: None
Output: DRIVER_IP_DEVICE_INFO structure
Notes: This call does not access the hardware, only stored driver parameters.
NewIpCntl indicates that the module’s carrier has expanded slot control capabilities.
See the definition of DRIVER_IP_DEVICE_INFO below.

typedef struct _DRIVER_IP_DEVICE_INFO {
 UCHAR DriverRev; // Driver revision
 UCHAR FirmwareRev; // Firmware major revision
 UCHAR FirmwareRevMin; // Firmware minor revision
 UCHAR InstanceNum; // Zero-based device number
 UCHAR CarrierSwitch; // 0..0xFF
 UCHAR CarrierSlotNum; // 0..7 -> IP slots A, B, C, D, E, F, G or H
 UCHAR CarDriverRev; // Carrier driver revision
 UCHAR CarFirmwareRev; // Carrier firmware major revision
 UCHAR CarFirmwareRevMin;// Carrier firmware minor revision
 UCHAR CarCPLDRev; //*Used for PCIe carriers only**0xFF for others
 UCHAR CarCPLDRevMin; //*Used for PCIe carriers only**0xFF for others
 BOOLEAN Ip32MCapable; // IP capable of both 8MHz and 32MHz operation
 BOOLEAN NewIpCntl; // New IP slot control interface
 WCHAR LocationString[IP_LOC_STRING_SIZE];
} DRIVER_IP_DEVICE_INFO, *PDRIVER_IP_DEVICE_INFO;

IOCTL_IP_1553_SET_IP_CONTROL
Function: Sets various control parameters for the IP slot the module is installed in.
Input: IP_SLOT_CONTROL structure
Output: None
Notes: Controls the IP clock speed, interrupt enables and data manipulation options for
the IP slot that the board occupies. See the definition of IP_SLOT_CONTROL below.
For more information refer to the IP carrier hardware manual.

typedef struct _IP_SLOT_CONTROL {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
} IP_SLOT_CONTROL, *PIP_SLOT_CONTROL;

 Embedded Solutions Page 11 of 34

IOCTL_IP_1553_GET_IP_STATE
Function: Returns control/status information for the IP slot the module is installed in.
Input: None
Output: IP_SLOT_STATE structure
Notes: Returns the slot control parameters set in the previous call as well as status
information for the IP slot that the board occupies. See the definition of
IP_SLOT_STATE below.

typedef struct _IP_SLOT_STATE {
 BOOLEAN Clock32Sel;
 BOOLEAN ClockDis;
 BOOLEAN ByteSwap;
 BOOLEAN WordSwap;
 BOOLEAN WrIncDis;
 BOOLEAN RdIncDis;
 UCHAR WrWordSel;
 UCHAR RdWordSel;
 BOOLEAN BsErrTmOutSel;
 BOOLEAN ActCountEn;
 // Slot Status
 BOOLEAN IpInt0En;
 BOOLEAN IpInt1En;
 BOOLEAN IpBusErrIntEn;
 BOOLEAN IpInt0Actv;
 BOOLEAN IpInt1Actv;
 BOOLEAN IpBusError;
 BOOLEAN IpForceInt;
 BOOLEAN WrBusError;
 BOOLEAN RdBusError;

} IP_SLOT_STATE, *PIP_SLOT_STATE;.

IOCTL_IP_1553_GET_STATUS
Function: Returns the status bits in the IP_1553_STATUS register.
Input: None
Output: Register configuration (unsigned short integer)
Notes: Returns the interrupt status for the two 1553 devices.

IOCTL_IP_1553_RESET_DEV
Function: Does a hardware reset of one of the 1553 devices.
Input: 1553 channel to reset (unsigned character)
Output: None
Notes: The selected 1553 device will revert to Bus Controller mode after a hardware
reset.

 Embedded Solutions Page 12 of 34

IOCTL_IP_1553_SET_MODE
Function: Selects the operating mode for a 1553 channel device.
Input: device channel number and mode (IP_1553_CHAN_MODE structure)
Output: None
Notes: All handles referencing the channel device must be closed before issuing this
command or the device object will not be removed from the system. See the definition
of IP_1553_CHAN_MODE below.

typedef enum _IP_1553_MODE_SEL {
 BUS_CONTROL,
 MONITOR,
 REMOTE_TERM,
 REM_TERM_MON,
 IDLE
} IP_1553_MODE_SEL, *PIP_1553_MODE_SEL;

 // Channel configuration
typedef struct _IP_1553_CHAN_MODE {
 UCHAR Channel;
 IP_1553_MODE_SEL Mode;
} IP_1553_CHAN_MODE, *PIP_1553_CHAN_MODE;

IOCTL_IP_1553_GET_MODE
Function: Returns the operating mode for the selected 1553 channel device.
Input: device channel number (unsigned character)
Output: Operating mode (IP_1553_MODE_SEL enumeration type)
Notes: See the definition of IP_1553_SEL above.

IOCTL_IP_1553_REGISTER_EVENT
Function: Registers an Event object to be signalled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_IP_1553_FORCE_INTERRUPT
Function: Causes an IP interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus. This IOCTL is used for test
and development, to test interrupt processing.

 Embedded Solutions Page 13 of 34

IOCTL_IP_1553_SET_VECTOR
Function: Sets the value of the interrupt vector.
Input: Interrupt vector value (unsigned character)
Output: None
Notes: This value will be driven onto the low byte of the data bus in response to an
INT_SEL strobe, which is used in vectored interrupt cycles. This value will also be read
in the interrupt service routine and stored for future reference.

IOCTL_IP_1553_GET_VECTOR
Function: Returns the current interrupt vector value.
Input: None
Output: Interrupt vector value (unsigned character)
Notes:

IOCTL_IP_1553_ISR_STATUS
Function: Returns the interrupt status and vector read in the last ISR.
Input: None
Output: IP_1553_ISR_STAT structure
Notes: The status contains the interrupt vector and the contents of the status register
read in the last ISR execution. Also, if bit 12 is set in the interrupt status, it indicates
that a bus error occurred for this IP slot. See below for the definition of
IP_1553_ISR_STAT.

 // Interrupt status and vector
typedef struct _IP_1553_ISR_STAT {
 USHORT IntSlotStatus;
 USHORT IntDevStatus;
 USHORT InterruptVector;
} IP_1553_ISR_STAT, *PIP_1553_ISR_STAT;

IOCTL_IP_1553_LOOP_TEST
Function: Tests the external loopback path between bus A and bus B.
Input: None
Output: None
Notes: Must call the IOCTL_IP_1553_STOP_LOOP_TEST after running this IOCTLs to
return device back to normal operation. It is recommended that
IOCTL_IP_1553_GET_MODE is run before and IOCTOL_IP_1553_SET_MODE is run
after this loop test is run.

IOCTL_IP_1553_STOP_LOOP_TEST
Function: Takes the 1553 out of test mode.
Input: None
Output: None
Notes: Should be run after IOCTL_IP_1553_LOOP_TEST to take it out of test mode.

 Embedded Solutions Page 14 of 34

IOCTL_IP_1553_WRITE_MEM_WORD
Function: Write a single word to the IP1553 RAM.
Input: IP_1553_MEM_WRITE
Output: None
Notes:

typedef struct _IP_1553_MEM_WRITE {
 UCHAR Channel;
 USHORT Offset;
 USHORT Data;
} IP_1553_MEM_WRITE, *PIP_1553_MEM_WRITE;

IOCTL_IP_1553_READ_MEM_WORD
Function: Read a single word from the IP1553 RAM.
Input: IP_1553_MEM_READ_ADDR
Output: USHORT
Notes:

typedef struct _IP_1553_READ_ADDR {
 UCHAR Channel;
 USHORT Offset;
} IP_1553_READ_ADDR, *PIP_1553_READ_ADDR;

IOCTL_IP_1553_GET_NUM_CHANS
Function: Returns the number of 1553 devices (channels) installed.
Input: None
Output: UCHAR
Notes: The number of channels will be either 1 or 2.
	

 Embedded Solutions Page 15 of 34

The IOCTLs defined for the Bus Controller driver are described below:

IOCTL_BUS_CNTRL_GET_INFO
Function: Returns the bus controller driver revision, the IP-1553 device instance
number and the IP-1553 device channel number.
Input: None
Output: BUS_CNTRL_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to reference the same physical module
in the application software. See the definition of
BUS_CNTRL_DRIVER_DEVICE_INFO.

typedef struct _BUS_CNTRL_DRIVER_DEVICE_INFO {
 ULONG DriverRev; // Bus controller driver rev.
 USHORT DeviceNum; // IP-1553 device instance number from Ip1553 driver
 UCHAR Channel; // IP-1553 device channel number (0 or 1)
} BUS_CNTRL_DRIVER_DEVICE_INFO, *PBUS_CNTRL_DRIVER_DEVICE_INFO;

IOCTL_BUS_CNTRL_SET_CONFIG
Function: Sets the channel and bus controller internal device register configuration.
Input: BUS_CNTRL_DEV_CONFIG structure
Output: None
Notes: This call controls the channel enable, power-on BIT disable and Sleep mode as
well as numerous internal device register controls. See BusCntrlPublic.h for the
definition of BUS_CNTRL_DEV_CONFIG.

IOCTL_BUS_CNTRL_GET_CONFIG
Function: Returns the channel and bus controller internal device configuration.
Input: None
Output: BUS_CNTRL_DEV_CONFIG structure
Notes: Returns the values set by the previous call. See BusCntrlPublic.h for the
definition of BUS_CNTRL_DEV_CONFIG.

 Embedded Solutions Page 16 of 34

IOCTL_BUS_CNTRL_GET_STATUS
Function: Returns the channel status and the values read from the two bus controller
device interrupt status registers.
Input: None
Output: BUS_CNTRL_INT_STATUS structure
Notes: See the definition of BUS_CNTRL_INT_STATUS below.

typedef struct _BUS_CNTRL_INT_STATUS {
 USHORT IntStatReg;
 USHORT DevIntStat1;
 USHORT DevIntStat2;
} BUS_CNTRL_INT_STATUS, *PBUS_CNTRL_INT_STATUS;

IOCTL_BUS_CNTRL_SET_MEM_WRITE_PTR
Function: Sets the value of the bus controller internal RAM write pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory write pointer is stored by the driver to be referenced in future
WriteFile() calls.

IOCTL_BUS_CNTRL_SET_MEM_READ_PTR
Function: Sets the value of the bus controller internal RAM read pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory read pointer is stored by the driver to be referenced in future
ReadFile() calls.

IOCTL_BUS_CNTRL_WRITE_MEM_WORD
Function: Writes a single word to the bus controller internal RAM.
Input: Memory offset and data to write (BUS_CNTRL_MEM_WRITE structure)
Output: None
Notes: This call is used to write small amounts of data or to non-contiguous areas of
memory.

IOCTL_BUS_CNTRL_READ_MEM_WORD
Function: Reads a single word from the bus controller internal RAM.
Input: Memory offset (unsigned short integer)
Output: Memory word (unsigned short integer)
Notes: This call is used to read small amounts of data or from non-contiguous areas of
memory.

 Embedded Solutions Page 17 of 34

IOCTL_BUS_CNTRL_SET_IINST_PTR
Function: Sets the value of the bus controller initial instruction pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: This is the memory address of the first instruction of the message processing
program.

IOCTL_BUS_CNTRL_GET_IINST_PTR
Function: Returns the value of the bus controller initial instruction pointer.
Input: None
Output: Memory offset (unsigned short integer)
Notes: Returns the value written in the previous call.

IOCTL_BUS_CNTRL_SET_GPQ_PTR
Function: Sets the value of the bus controller general-purpose queue pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The general purpose queue can be used for any purpose the user wishes. The
queue is written by specific instructions in the message processing code.

IOCTL_BUS_CNTRL_GET_GPQ_PTR
Function: Returns the value of the bus controller general-purpose queue pointer.
Input: None
Output: Memory offset (unsigned short integer)
Notes: Returns the value written in the previous call.

IOCTL_BUS_CNTRL_SET_INTERRUPT_CONFIG
Function: Sets the bus controller device interrupt condition enables.
Input: BUS_CNTRL_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the bus controller device will cause an interrupt.
See the 1553 device data sheet for descriptions of the possible bus controller interrupt
conditions. See BusCntrlPublic.h for the definition of BUS_CNTRL_INT_CONFIG.

IOCTL_BUS_CNTRL_GET_INTERRUPT_CONFIG
Function: Returns the values set in the previous call.
Input: None
Output: BUS_CNTRL_INT_CONFIG structure
Notes: See the 1553 device data sheet for bus controller interrupt condition
descriptions. See BusCntrlPublic.h for the definition of BUS_CNTRL_INT_CONFIG.

 Embedded Solutions Page 18 of 34

IOCTL_BUS_CNTRL_START_PROCESSING
Function: Starts message processing at the address specified in the initial instruction
pointer register.
Input: None
Output: None
Notes: The start bit is written to the start/reset register which initiates message
processing. This instruction will also resume message processing if the message
processor has halted due to an error or a halt instruction.

IOCTL_BUS_CNTRL_STOP_PROCESSING
Function: Stops the bus controller message processing.
Input: None
Output: None
Notes: This call writes a reset to the start/reset register and then does basic
initialization of the bus controller.

IOCTL_BUS_CNTRL_SET_GP_FLAGS
Function: Sets, clears, toggles or leaves unchanged each of the eight general-purpose
flags of the bus controller device.
Input: BUS_CNTRL_GPFLAG_CNTRL structure
Output: None
Notes: BUS_CNTRL_GPFLAG_CNTRL contains an array of eight values that specify
the operation to be performed on each of the eight general-purpose flags. These flags
are used to control the flow of the message processing program. See BusCntrlPublic.h
for the definition of BUS_CNTRL_GPFLAG_CNTRL.

IOCTL_BUS_CNTRL_GET_GP_FLAGS
Function: Returns the state of the general-purpose flags and the status results from the
last message processed by the bus controller.
Input: None
Output: BUS_CNTRL_GPFLAG_STATE structure
Notes: See BusCntrlPublic.h for the definition of BUS_CNTRL_GPFLAG_STATE.

IOCTL_BUS_CNTRL_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

 Embedded Solutions Page 19 of 34

IOCTL_BUS_CNTRL_ENABLE_INTERRUPT
Function: Enables the bus controller device master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the 1553 bus controller device to generate
interrupts. The master interrupt is disabled in the driver interrupt service routine.
Therefore this command must be run after each interrupt is processed to re-enable the
interrupts.

IOCTL_BUS_CNTRL_DISABLE_INTERRUPT
Function: Disables the master interrupt for the 1553 bus controller device.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.

IOCTL_BUS_CNTRL_FORCE_INTERRUPT
Function: Causes a 1553 channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the
1553 bus controller device. This IOCTL is used for test and development, to test
interrupt processing.

IOCTL_BUS_CNTRL_GET_ISR_STATUS
Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status values (BUS_CNTRL_INT_STAT)
Notes: Returns the status and 1553 bus controller device interrupt status (ISR1 and
ISR2) that was read in the interrupt service routine for the last 1553 bus controller
device interrupt serviced. The FPGA status register interrupt bit is shifted down three or
five positions depending on the 1553 channel number to make it consistent for both
channels.

 Embedded Solutions Page 20 of 34

The IOCTLs defined for the Monitor driver are described below:

IOCTL_MONITOR_GET_INFO
Function: Returns the monitor driver version, the IP-1553 device instance number and
the IP-1553 device channel number.
Input: None
Output: MONITOR_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to reference the same physical module
in the application software. See MonitorPublic.h for the definition of
MONITOR_DRIVER_DEVICE_INFO.

IOCTL_MONITOR_SET_CONFIG
Function: Sets the channel and monitor internal device register configuration.
Input: MONITOR_DEV_CONFIG structure
Output: None
Notes: This call controls the channel enable, power-on BIT disable and Sleep mode as
well as numerous internal device register controls. See MonitorPublic.h for the
definition of MONITOR_DEV_CONFIG.

IOCTL_MONITOR_GET_CONFIG
Function: Returns the channel and monitor internal device configuration.
Input: None
Output: MONITOR_DEV_CONFIG structure
Notes: Returns the values set by the previous call. See MonitorPublic.h for the
definition of MONITOR_DEV_CONFIG.

IOCTL_MONITOR_GET_STATUS
Function: Returns the channel status and the values read from the two monitor device
interrupt status registers.
Input: None
Output: MONITOR_INT_STATUS structure
Notes: See MonitorPublic.h for the definition of MONITOR_INT_STATUS and the
relevant status register bits.

IOCTL_MONITOR_SET_MEM_WRITE_PTR
Function: Sets the value of the monitor internal RAM write pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory write pointer is stored by the driver to be referenced in future
WriteFile() calls.

 Embedded Solutions Page 21 of 34

IOCTL_MONITOR_SET_MEM_READ_PTR
Function: Sets the value of the monitor internal RAM read pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory read pointer is stored by the driver to be referenced in future
ReadFile() calls.

IOCTL_MONITOR_WRITE_MEM_WORD
Function: Writes a single word to the bus controller internal RAM.
Input: Memory offset and data to write (MONITOR_MEM_WRITE structure)
Output: None
Notes: This call is used to write small amounts of data or to non-contiguous areas of
memory.

IOCTL_MONITOR_READ_MEM_WORD
Function: Reads a single word from the bus controller internal RAM.
Input: Memory offset (unsigned short integer)
Output: Memory word (unsigned short integer)
Notes: This call is used to read small amounts of data or from non-contiguous areas of
memory.

IOCTL_MONITOR_SET_ISQ_PTR
Function: Sets the initial value of the monitor interrupt status queue pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: Bits 15 to 6 define the base address of the interrupt status queue. The value of
these bits will not change in the course of processing. Bits 5 to 0 should initially be set
to zero. These bits will increment as data is inserted into the queue. The ISQ pointer is
always referencing the next location to be written. Use of the 64-word interrupt status
queue is optional. If used, two words will be written to the queue for each interrupt
event. The first word is the interrupt vector which indicates the cause of the interrupt. If
bit zero in the interrupt vector is a one, it indicates that the interrupt was a result of a
message. If this is the case, the second word will be a pointer to the first word in the
command stack entry for that message. If the interrupt was caused by a RAM parity
error, the second word will be the RAM address where the error occurred. If the
interrupt was not caused by a message or a RAM parity error, the second word is not
used and will be all zeros.

IOCTL_MONITOR_GET_ISQ_PTR
Function: Returns the current value of the monitor status queue pointer.
Input: None
Output: Memory offset (unsigned short integer)
Notes: The value of the interrupt status pointer is modulo 64. When the pointer
reaches an address that is divisible by 64 it will roll-over to the initial pointer value.

 Embedded Solutions Page 22 of 34

IOCTL_MONITOR_SET_INTERRUPT_CONFIG
Function: Sets the monitor device interrupt condition enables.
Input: MONITOR_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the monitor device will cause an interrupt. See
the 1553 device data sheet for descriptions of the possible monitor interrupt conditions.
See MonitorPublic.h for the definition of MONITOR_INT_CONFIG.

IOCTL_MONITOR_GET_INTERRUPT_CONFIG
Function: Returns the values set in the previous call.
Input: None
Output: MONITOR_INT_CONFIG structure
Notes: See the 1553 device data sheet for monitor interrupt condition descriptions. See
MonitorPublic.h for the definition of MONITOR_INT_CONFIG.

IOCTL_MONITOR_START_PROCESSING
Function: Starts the message monitoring process.
Input: None
Output: None
Notes: The start bit is written to the start/reset register which initiates the message
monitoring process.

IOCTL_MONITOR_STOP_PROCESSING
Function: Stops the message monitoring process
Input: None
Output: None
Notes: This call writes a reset to the start/reset register and then does basic
initialization of the monitor device.

IOCTL_MONITOR_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

 Embedded Solutions Page 23 of 34

IOCTL_MONITOR_ENABLE_INTERRUPT
Function: Enables the monitor device master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the 1553 monitor device to generate
interrupts. The master interrupt is disabled in the driver interrupt service routine.
Therefore this command must be run after each interrupt is processed to re-enable the
interrupts.

IOCTL_MONITOR_DISABLE_INTERRUPT
Function: Disables the master interrupt for the 1553 monitor device.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.

IOCTL_MONITOR_FORCE_INTERRUPT
Function: Causes a 1553 channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the
1553 monitor device. This IOCTL is used for test and development, to test interrupt
processing.

IOCTL_MONITOR_GET_ISR_STATUS
Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status values (MONITOR_INT_STAT)
Notes: Returns the status and 1553 monitor device interrupt status (ISR1 and ISR2)
that was read in the interrupt service routine for the last 1553 monitor device interrupt
serviced. The FPGA status register interrupt bit is shifted down three or five positions
depending on the 1553 channel number to make it consistent for both channels.

 Embedded Solutions Page 24 of 34

The IOCTLs defined for the Remote Terminal driver are described below:

IOCTL_REM_TERM_GET_INFO
Function: Returns the remote terminal driver revision, the IP-1553 device instance
number and the IP-1553 device channel number
Input: None
Output: REM_TERM_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to reference the same physical module
in the application software. See RemTermPublic.h for the definition of
REM_TERM_DRIVER_DEVICE_INFO.

IOCTL_REM_TERM_SET_CONFIG
Function: Sets the channel and remote terminal internal device register configuration.
Input: REM_TERM_DEV_CONFIG structure
Output: None
Notes: This call controls the channel enable, power-on BIT disable and Sleep mode as
well as numerous internal device register controls. See RemTermPublic.h for the
definition of REM_TERM_DEV_CONFIG.

IOCTL_REM_TERM_GET_CONFIG
Function: Returns the channel and remote terminal internal device configuration.
Input: None
Output: REM_TERM_DEV_CONFIG structure
Notes: Returns the values set by the previous call. See RemTermPublic.h for the
definition of REM_TERM_DEV_CONFIG.

IOCTL_REM_TERM_GET_STATUS
Function: Returns the channel status and the values read from the two remote terminal
device interrupt status registers.
Input: None
Output: REM_TERM_INT_STATUS structure
Notes: See RemTermPublic.h for the definition of REM_TERM_INT_STATUS and the
relevant status register bits.

IOCTL_REM_TERM_SET_MEM_WRITE_PTR
Function: Sets the value of the remote terminal internal RAM write pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory write pointer is stored by the driver to be referenced in future
WriteFile() calls.

 Embedded Solutions Page 25 of 34

IOCTL_REM_TERM_SET_MEM_READ_PTR
Function: Sets the value of the remote terminal internal RAM read pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory read pointer is stored by the driver to be referenced in future
ReadFile() calls.

IOCTL_REM_TERM_WRITE_MEM_WORD
Function: Writes a single word to the bus controller internal RAM.
Input: Memory offset and data to write (REM_TERM_MEM_WRITE structure)
Output: None
Notes: This call is used to write small amounts of data to non-contiguous areas of
memory.

IOCTL_REM_TERM_READ_MEM_WORD
Function: Reads a single word from the bus controller internal RAM.
Input: Memory offset (unsigned short integer)
Output: Memory word (unsigned short integer)
Notes: This call is used to read small amounts of data from non-contiguous areas of
memory.

IOCTL_REM_TERM_SET_ISQ_PTR
Function: Sets the initial value of the remote terminal interrupt status queue pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: Bits 15 to 6 define the base address of the interrupt status queue. The value of
these bits will not change in the course of processing. Bits 5 to 0 should initially be set
to zero. These bits will increment as data is inserted into the queue. The ISQ pointer is
always referencing the next location to be written. Use of the 64-word interrupt status
queue is optional. If used, two words will be written to the queue for each interrupt
event. The first word is the interrupt vector which indicates the cause of the interrupt. If
bit zero in the interrupt vector is a one, it indicates that the interrupt was a result of a
message. If this is the case, the second word will be a pointer to the first word in the
command stack entry for that message. If the interrupt was caused by a RAM parity
error, the second word will be the RAM address where the error occurred. If the
interrupt was not caused by a message or a RAM parity error, the second word is not
used and will be all zeros.

IOCTL_REM_TERM_GET_ISQ_PTR
Function: Returns the current value of the interrupt status queue pointer.
Input: None
Output: Memory offset (unsigned short integer)
Notes: The value of the interrupt status pointer is modulo 64. When the pointer
reaches an address that is divisible by 64 it will roll-over to the initial pointer value.

 Embedded Solutions Page 26 of 34

IOCTL_REM_TERM_SET_INTERRUPT_CONFIG
Function: Sets the remote terminal device interrupt condition enables.
Input: REM_TERM_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the 1553 device will cause an interrupt. See the
1553 device data sheet for descriptions of the possible remote terminal interrupt
conditions. See RemTermPublic.h for the definition of REM_TERM_INT_CONFIG.

IOCTL_REM_TERM_GET_INTERRUPT_CONFIG
Function: Returns the values set in the previous call.
Input: None
Output: REM_TERM_INT_CONFIG structure
Notes: See the 1553 device data sheet for remote terminal interrupt condition
descriptions. See RemTermPublic.h for the definition of REM_TERM_INT_CONFIG.

IOCTL_REM_TERM_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_REM_TERM_ENABLE_INTERRUPT
Function: Enables the remote terminal device master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the 1553 remote terminal device to
generate interrupts. The master interrupt is disabled in the driver interrupt service
routine. Therefore this command must be run after each interrupt is processed to re-
enable the interrupts.

IOCTL_REM_TERM_DISABLE_INTERRUPT
Function: Disables the master interrupt for the 1553 remote terminal device.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.

 Embedded Solutions Page 27 of 34

IOCTL_REM_TERM_FORCE_INTERRUPT
Function: Causes a 1553 channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the
1553 remote terminal device. This IOCTL is used for test and development, to test
interrupt processing.

IOCTL_REM_TERM_GET_ISR_STATUS
Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status values (REM_TERM_INT_STAT)
Notes: Returns the status and 1553 remote terminal device interrupt status (ISR1 and
ISR2) that was read in the interrupt service routine for the last 1553 remote terminal
device interrupt serviced. The FPGA status register interrupt bit is shifted down three or
five positions depending on the 1553 channel number to make it consistent for both
channels.

 Embedded Solutions Page 28 of 34

The IOCTLs defined for the Remote Terminal Monitor driver are described below:

IOCTL_RM_TRM_MON_GET_INFO
Function: Returns the remote terminal/monitor driver revision, the IP-1553 device
instance number and the IP-1553 device channel number
Input: None
Output: RM_TRM_MON_DRIVER_DEVICE_INFO structure
Notes: The device number is passed to the channel devices so that the base device
and channel device handles can be coordinated to reference the same physical module
in the application software. See the definition of
RM_TRM_MON_DRIVER_DEVICE_INFO below.

typedef struct _RM_TRM_MON_DRIVER_DEVICE_INFO {
 ULONG DriverRev;
 USHORT DeviceNum;
 UCHAR Channel;
} RM_TRM_MON_DRIVER_DEVICE_INFO, *PRM_TRM_MON_DRIVER_DEVICE_INFO;

IOCTL_RM_TRM_MON_SET_CONFIG
Function: Sets the channel and remote terminal/monitor internal device register
configuration.
Input: RM_TRM_MON_DEV_CONFIG structure
Output: None
Notes: This call controls the channel enable, power-on BIT disable and Sleep mode as
well as numerous internal device register controls. See the definition of
RM_TRM_MON_DEV_CONFIG in the RmTrmMonPublic.h file.

IOCTL_RM_TRM_MON_GET_CONFIG
Function: Returns the channel and remote terminal/monitor internal device
configuration.
Input: None
Output: RM_TRM_MON_DEV_CONFIG structure
Notes: Returns the values set by the previous call. See the definition of
RM_TRM_MON_DEV_CONFIG in the RmTrmMonPublic.h file.

IOCTL_RM_TRM_MON_GET_STATUS
Function: Returns the channel status and the values read from the two remote
terminal/monitor device interrupt status registers.
Input: None
Output: RM_TRM_MON_INT_STATUS structure
Notes: See RmTrmMonPublic.h for the definition of RM_TRM_MON_INT_STATUS.

 Embedded Solutions Page 29 of 34

IOCTL_RM_TRM_MON_SET_MEM_WRITE_PTR
Function: Sets the value of the remote terminal/monitor internal RAM write pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory write pointer is stored by the driver to be referenced in future
WriteFile() calls.

IOCTL_RM_TRM_MON_SET_MEM_READ_PTR
Function: Sets the value of the remote terminal/monitor internal RAM read pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: The memory read pointer is stored by the driver to be referenced in future
ReadFile() calls.

IOCTL_RM_TRM_MON_WRITE_MEM_WORD
Function: Writes a single word to the bus controller internal RAM.
Input: Memory offset and data to write (RM_TRM_MON_MEM_WRITE structure)
Output: None
Notes: This call is used to write small amounts of data to non-contiguous areas of
memory.

IOCTL_RM_TRM_MON_READ_MEM_WORD
Function: Reads a single word from the bus controller internal RAM.
Input: Memory offset (unsigned short integer)
Output: Memory word (unsigned short integer)
Notes: This call is used to read small amounts of data from non-contiguous areas of
memory.

 Embedded Solutions Page 30 of 34

IOCTL_RM_TRM_MON_SET_ISQ_PTR
Function: Sets the initial value of the remote terminal/monitor interrupt status queue
pointer.
Input: Memory offset (unsigned short integer)
Output: None
Notes: Bits 15 to 6 define the base address of the interrupt status queue. The value of
these bits will not change in the course of processing. Bits 5 to 0 should initially be set
to zero. These bits will increment as data is inserted into the queue. The ISQ pointer is
always referencing the next location to be written. Use of the 64-word interrupt status
queue is optional. If used, two words will be written to the queue for each interrupt
event. The first word is the interrupt vector which indicates the cause of the interrupt. If
bit zero in the interrupt vector is a one, it indicates that the interrupt was a result of a
message. If this is the case, the second word will be a pointer to the first word in the
command stack entry for that message. If the interrupt was caused by a RAM parity
error, the second word will be the RAM address where the error occurred. If the
interrupt was not caused by a message or a RAM parity error, the second word is not
used and will be all zeros.

IOCTL_RM_TRM_MON_GET_ISQ_PTR
Function: Returns the current value of the interrupt status queue pointer.
Input: None
Output: Memory offset (unsigned short integer)
Notes: The ISQ pointer is always referencing the next location to be written.

IOCTL_RM_TRM_MON_SET_INTERRUPT_CONFIG
Function: Sets the remote terminal/monitor device interrupt condition enables.
Input: RM_TRM_MON_INT_CONFIG structure
Output: None
Notes: Determines which conditions in the remote terminal/monitor device will cause an
interrupt. See the 1553 device data sheet for descriptions of the possible remote
terminal/monitor interrupt conditions. See RmTrmMonPublic.h for the definition of
RM_TRM_MON_INT_CONFIG.

IOCTL_RM_TRM_MON_GET_INTERRUPT_CONFIG
Function: Returns the values set in the previous call.
Input: None
Output: RM_TRM_MON_INT_CONFIG structure
Notes: See the 1553 device data sheet for remote terminal/monitor interrupt condition
descriptions. See RmTrmMonPublic.h for the definition of
RM_TRM_MON_INT_CONFIG.

 Embedded Solutions Page 31 of 34

IOCTL_RM_TRM_MON_REGISTER_EVENT
Function: Registers an event to be signaled when an interrupt occurs.
Input: Handle to the Event object
Output: None
Notes: The caller creates an event with CreateEvent() and supplies the handle returned
from that call as the input to this IOCTL. The driver then obtains a system pointer to the
event and signals the event when a user interrupt is serviced. The user interrupt
service routine waits on this event, allowing it to respond to the interrupt.

IOCTL_RM_TRM_MON_ENABLE_INTERRUPT
Function: Enables the remote terminal/monitor device master interrupt.
Input: None
Output: None
Notes: This command must be run to allow the 1553 remote terminal/monitor device to
generate interrupts. The master interrupt is disabled in the driver interrupt service
routine. Therefore this command must be run after each interrupt is processed to re-
enable the interrupts.

IOCTL_RM_TRM_MON_DISABLE_INTERRUPT
Function: Disables the master interrupt for the 1553 remote terminal/monitor device.
Input: None
Output: None
Notes: This call is used when interrupt processing is no longer desired.
IOCTL_RM_TRM_MON_FORCE_INTERRUPT
Function: Causes a 1553 channel interrupt to occur.
Input: None
Output: None
Notes: Causes an interrupt to be asserted on the IP bus as if it were caused by the
1553 remote terminal/monitor device. This IOCTL is used for test and development, to
test interrupt processing.

 Embedded Solutions Page 32 of 34

IOCTL_RM_TRM_MON_GET_ISR_STATUS
Function: Returns the interrupt status and associated information from the last ISR.
Input: None
Output: Interrupt status values (RM_TRM_MON_INT_STAT)
Notes: Returns the status and 1553 remote terminal/monitor device interrupt status
(ISR1 and ISR2) that was read in the interrupt service routine for the last 1553 remote
terminal/monitor device interrupt serviced. The FPGA status register interrupt bit is
shifted down three or five positions depending on the 1553 channel number to make it
consistent for both channels.

 Embedded Solutions Page 33 of 34

Write
Bus Control, Remote Terminal, Monitor or Remote Terminal Monitor data is written to
the device using the write command. Writes are executed using the Win32 function
WriteFile() (see below) and passing in the handle to the target device, a pointer to a pre-
allocated buffer containing the data to be written, an unsigned long integer that
represents the number of bytes to be transferred, a pointer to an unsigned long integer
to contain the number of bytes actually written, and a pointer to an optional Overlapped
structure for performing asynchronous I/O. The initial RAM address to begin the write is
stored in the driver and can be updated with the SET_MEM_WRITE_PTR call.

BOOL WriteFile(
 HANDLE hDevice, // Handle opened with CreateFile()
 LPVOID lpBuffer, // Pointer to write buffer
 DWORD nNumberOfBytesToWrite, // Size of write buffer
 LPDWORD lpNumberOfBytesWritten,// Pointer to actual length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
); // structure used for asynchronous I/O

Read
Bus Control, Remote Terminal, Monitor or Remote Terminal Monitor data is read from
the device using the read command. Reads are executed using the Win32 function
ReadFile() (see below) and passing in the handle to the target device, a pointer to a
pre-allocated buffer that will contain the data read, an unsigned long integer that
represents the number of bytes to be transferred, a pointer to an unsigned long integer
to contain the number of bytes actually read, and a pointer to an optional Overlapped
structure for performing asynchronous I/O. The initial RAM address to begin the read is
stored in the driver and can be updated with the SET_MEM_READ_PTR call.

BOOL ReadFile(
 HANDLE hDevice, // Handle opened with CreateFile()
 LPVOID lpBuffer, // Pointer to read buffer
 DWORD nNumberOfBytesToRead, // Size of read buffer
 LPDWORD lpNumberOfBytesRead, // Pointer to actual length parameter
 LPOVERLAPPED lpOverlapped, // Optional pointer to overlapped
); // structure used for asynchronous I/O

 Embedded Solutions Page 34 of 34

Warranty and Repair
Please refer to the warranty page on our website for the current warranty offered and
options.
http://www.dyneng.com/warranty.html

Service Policy
Before returning a product for repair, verify as well as possible that the driver is at fault.
The driver has gone through extensive testing, and in most cases it will be “cockpit
error” rather than an error with the driver. When you are sure or at least willing to pay to
have someone help then call or e-mail and arrange to work with an engineer. We will
work with you to determine the cause of the issue.
Support
The software described in this manual is provided at no cost to clients who have
purchased the corresponding hardware. Minimal support is included along with the
documentation. For help with integration into your project please contact
sales@dyneng.com for a support contract. Several options are available. With a
contract in place Dynamic Engineers can help with system debugging, special software
development, or whatever you need to get going.

For Service Contact:
Customer Service Department
Dynamic Engineering
150 DuBois Street, Suite C
Santa Cruz, CA 95060
831-457-8891
support@dyneng.com

All information provided is Copyright Dynamic Engineering

